Hereditary Structural Completeness of Weakly Transitive Logics

Simon Lemal

Work supervised by Nick Bezhanishvili and Tommaso Moraschini

Tuesday 7th November, 2023

The following problems are equivalent:

- Characterising the 1-transitive modal logics Λ such that \vdash_Λ is HSC.
- Characterising the axiomatic extensions of \vdash_{wK4} which are HSC.
- Characterising the primitive varieties of wK4-algebras.

Some algebraic tools

Corollary

Let K be a primitive variety of 1-transitive algebras. The finite SI members of K are weakly projective in K.

Corollary

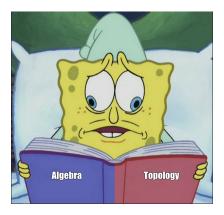
Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

A characterisation

Second direction

Jónsson-Tarski duality

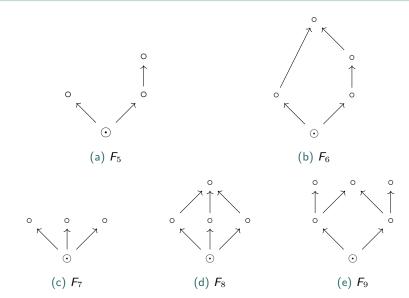
Algebra	Topology
Subalgebra	Quotient
	space
Quotient	Modal
	subspace
Finite	Disjoint union
product	
Finite SI	Finite rooted
Weakly	Weakly
projective	injective



Summary 000 A characterisation

Second direction

HSC logics above IPC (Citkin)



HSC logics above IPC (Citkin)

Theorem (Citkin)

A variety of Heyting algebras is primitive iff it omits F^* for F depicted on the previous slide.

Corollary

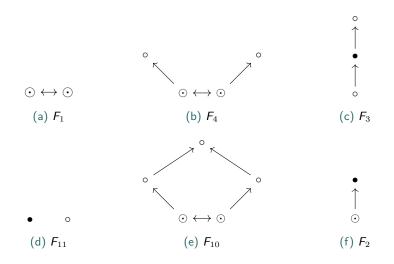
Let Λ be an intermediate logic and let K be the EAS of \vdash_{Λ} . TFEA.

- \vdash_{Λ} is HSC.
- K is primitive.
- Each frame F depicted on the previous slide is not a Λ -space.

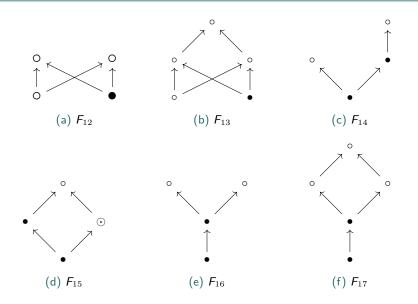
A characterisation

Second direction

HSC logics above K4 (Rybakov)



HSC logics above K4 (Rybakov)



A characterisation

Second direction

HSC logics above K4 (Carr)

HSC logics above K4 (Carr-Rybakov)

Theorem (Carr-Rybakov)

A variety of K4-algebras is primitive iff it omits F^* for F depicted on the previous slides and omits G_n for some $n < \omega$.

Corollary

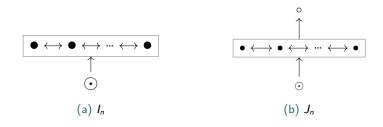
Let Λ be a transitive logic and let K be the EAS of \vdash_{Λ} . TFEA.

- \vdash_{Λ} is HSC.
- K is primitive.
- Each frame F depicted on the previous slides is not a Λ-space and for some n < ω, G_n is not a Λ-space.

Summary 000 A characterisation

Second direction

HSC logics above wK4



HSC logics above wK4

Theorem (SL)

A variety of wK4-algebras is primitive iff it omits F^* for F depicted on the previous slides, omits G_n for some $n < \omega$ and omits I_n and J_n for all $n < \omega$.

Corollary

Let Λ be a 1-transitive logic and let K be the EAS of \vdash_{Λ} . TFEA.

- \vdash_{Λ} is HSC.
- K is primitive.
- Each frame F depicted on the previous slides is not a Λ-space, for some n < ω, G_n is not a Λ-space and for all n < ω, I_n and J_n are not Λ-spaces.

First direction

Corollary

Let K be a primitive variety of 1-transitive algebras. The finite SI members of K are weakly projective in K.

Definition

An algebra A is weakly projective in a variety K if for all $B \in K$, $A \in \mathbb{H}(B)$ implies $A \in \mathbb{IS}(B)$.

Corollary

Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

Corollary

Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

- Any cobwebby variety has the FMP.
- In a cobwebby variety, the finite SI algebras are weakly projective.

Corollary

Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

- Any cobwebby variety has the FMP.
- In a cobwebby variety, the finite SI algebras are weakly projective.
- To achieve that goal
 - Describe properties of skeletons of cobwebby spaces (a.k.a. cobwebby skeletons).

Corollary

Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

- Any cobwebby variety has the FMP.
- In a cobwebby variety, the finite SI algebras are weakly projective.
- To achieve that goal
 - Describe properties of skeletons of cobwebby spaces (a.k.a. cobwebby skeletons).
 - Identify forbidden configurations in cobwebby spaces.

Corollary

Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

- Any cobwebby variety has the FMP.
- In a cobwebby variety, the finite SI algebras are weakly projective.
- To achieve that goal
 - Describe properties of skeletons of cobwebby spaces (a.k.a. cobwebby skeletons).
 - Identify forbidden configurations in cobwebby spaces.
 - Prove main structural theorem.

Properties of cobwebby skeletons

Let X be a cobwebby space.

Lemma

The maximal clusters of X are singletons.

Lemma

Either the maximal clusters of X are reflexive or X is an antichain of irreflexive points.

Properties of cobwebby skeletons

Let X be a cobwebby space.

Lemma

The maximal clusters of X are singletons.

Lemma

Either the maximal clusters of X are reflexive or X is an antichain of irreflexive points.

Let X be a cobwebby skeleton and $x \in X$ be irreflexive.

Lemma

Any chain in $R^{-1}[x]$ is finite and any $y \in R^{-1}[x]$ is irreflexive.

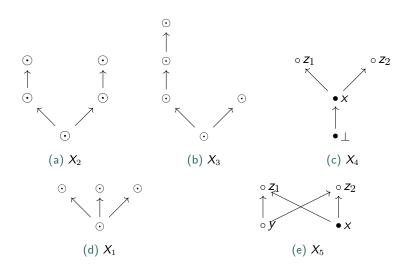
Lemma

Assume that $y R \times and y R z$. Then $\times and z$ are comparable.

A characterisation

Second direction 00000

Forbidden configurations



Main structural theorem

Let A be a cobwebby algebra and X its dual. Assume that A is finitely generated and SI. Then the frame underlying X is a sequential composition $\bigoplus_{\alpha \leq \beta} Q_{\alpha}$ of finite frames $(Q_{\alpha})_{\alpha \leq \beta}$ for some ordinal $\beta = \lambda + n$, with λ a limit ordinal and $n < \omega$, such that the following hold.

- Q_{α} is a single cluster if $\alpha = \beta$ or α is a limit ordinal.
- Q_{α} is a single cluster, a two cluster antichain or H if $\alpha = 0$.
- Q_{α} is a single cluster or a two cluster antichain otherwise.
- Any maximal cluster is a single reflexive point, if Q_{α} is a two cluster antichain then $Q_{\alpha+1}$ only contains improper clusters, and any non-minimal, proper cluster contains a reflexive point.
- If X contains an irreflexive cluster, then n ≠ 0 and there is some m ∈ {1,..., n} such that for all α < λ + m, Q_α does not contain any irreflexive cluster, and for all α ≥ λ + m, Q_α is an irreflexive cluster. Moreover, if m < n, then Q_{λ+m-1} is a single cluster.

Wrapping up

We can prove the following.

- Any cobwebby variety has the FMP.
- In a cobwebby variety, the finite SI algebras are weakly projective.

