Hereditary Structural Completeness of Weakly Transitive Logics

Simon Lemal

Work supervised by Nick Bezhanishvili and Tommaso Moraschini

Thursday 19th October, 2023

Let \vdash be a deductive system.

Definition

A rule $\Gamma \triangleright \phi$ is admissible in \vdash if it does not add new theorems to \vdash .

Let \vdash be a deductive system.

Definition

A rule $\Gamma \triangleright \phi$ is admissible in \vdash if it does not add new theorems to \vdash .

Definition

A rule $\Gamma \triangleright \psi$ is derivable in \vdash if $\Gamma \vdash \phi$.

Let \vdash be a deductive system.

Definition

A rule $\Gamma \triangleright \phi$ is admissible in \vdash if it does not add new theorems to \vdash .

Definition

A rule $\Gamma \triangleright \psi$ is derivable in \vdash if $\Gamma \vdash \phi$.

Definition

A deductive system \vdash is structurally complete (SC) if every admissible rule in \vdash is derivable in \vdash .

Let \vdash be a deductive system.

Definition

A rule $\Gamma \triangleright \phi$ is admissible in \vdash if it does not add new theorems to \vdash .

Definition

A rule $\Gamma \triangleright \psi$ is derivable in \vdash if $\Gamma \vdash \phi$.

Definition

A deductive system \vdash is structurally complete (SC) if every admissible rule in \vdash is derivable in \vdash .

Definition

A deductive system \vdash is hereditarily structurally complete (HSC) if all of its extensions (equivalently, axiomatic extensions) are SC.

1-transitive logics

Definition

wK4 is the modal logic

$\mathsf{K} + p \land \Box p \to \Box \Box p.$

1-transitive logics

Definition

wK4 is the modal logic

$\mathsf{K} + p \land \Box p \to \Box \Box p.$

Definition

A Kripke frame is a wK4-frame if its relation is 1-transitive, i.e.

x R y and y R z implies x R z or x = z

1-transitive logics

Definition

wK4 is the modal logic

$\mathsf{K} + p \land \Box p \to \Box \Box p.$

Definition

A Kripke frame is a wK4-frame if its relation is 1-transitive, i.e.

x R y and y R z implies x R z or x = z

Definition

A modal algebra is a wK4-algebra if it validates $a \land \Box a \leq \Box \Box a$ for all a.

Primitive varieties

A topological perspective 00

Dictionary

Logic	Algebra
Deductive	EAS
system	(variety)
Rules	Quasi-equations
Admissible	Valid in $F_{\mathcal{K}}(\omega)$
Derivable	Valid in <i>K</i>
Extensions	Subquasi-
	variety
Axiomatic	Subvarieties
extensions	
HSC	Primitive

Wrapping up

The following problems are equivalent:

- Characterising the 1-transitive modal logics Λ such that \vdash_Λ is HSC.
- \bullet Characterising the axiomatic extensions of \vdash_{wK4} which are HSC.
- Characterising the primitive varieties of wK4-algebras.

Definition

An algebra A is subdirectly irreducible (SI) if the identity relation is completely \wedge -irreducible in the congruence lattice of A.

Definition

An algebra A is subdirectly irreducible (SI) if the identity relation is completely \wedge -irreducible in the congruence lattice of A.

Definition

An algebra A is weakly projective in a variety K if for all $B \in K$, $A \in \mathbb{H}(B)$ implies $A \in \mathbb{IS}(B)$.

Definition

An algebra A is subdirectly irreducible (SI) if the identity relation is completely \wedge -irreducible in the congruence lattice of A.

Definition

An algebra A is weakly projective in a variety K if for all $B \in K$, $A \in \mathbb{H}(B)$ implies $A \in \mathbb{IS}(B)$.

Lemma

Let K be a primitive variety of finite type. The finite SI members of K are weakly projective in K.

Definition

An algebra A is subdirectly irreducible (SI) if the identity relation is completely \wedge -irreducible in the congruence lattice of A.

Definition

An algebra A is weakly projective in a variety K if for all $B \in K$, $A \in \mathbb{H}(B)$ implies $A \in \mathbb{IS}(B)$.

Theorem

Let K be a variety with EDPC, and such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

Equationally definable principal congruences

Definition

A variety K has equationally definable principal congruences (EDPC) if there is a finite set of equations $\Phi(x, y, z, t)$ such that for all $A \in K$ and $a, b, c, d \in A$, we have

$$(a,b) \in \operatorname{Cg}^{\mathcal{A}}(c,d)$$
 iff $A \models \Phi(c,d,a,b).$

Equationally definable principal congruences

Definition

A variety K has equationally definable principal congruences (EDPC) if there is a finite set of equations $\Phi(x, y, z, t)$ such that for all $A \in K$ and $a, b, c, d \in A$, we have

$$(a,b) \in \operatorname{Cg}^{\mathcal{A}}(c,d)$$
 iff $A \models \Phi(c,d,a,b).$

Proposition

If K has EDPC, we can define a finite set of equations $\Phi_n(x_1, y_1, \ldots, x_n, y_n, z, t)$ such that for all $A \in K$ and $a, b, c_1, d_1, \ldots, c_n, d_n \in A$, we have

$$(a, b) \in \operatorname{Cg}^{\mathcal{A}}((c_1, d_1), \dots, (c_n, d_n))$$

iff $A \models \Phi_n(a, b, c_1, d_1, \dots, c_n, d_n).$

DDT and EDPC

Theorem

If K has EDPC, then

$$\Theta, \phi_1 \approx \psi_1, \dots, \phi_n \approx \psi_n \models_{\kappa} \varepsilon \approx \delta$$

iff $\Theta \models_{\kappa} \Phi_n(\phi_1, \psi_1, \dots, \phi_n, \psi_n, \varepsilon, \delta).$

DDT and EDPC

Theorem

If K has EDPC, then

$$\Theta, \phi_1 \approx \psi_1, \dots, \phi_n \approx \psi_n \models_{\kappa} \varepsilon \approx \delta$$

iff $\Theta \models_{\kappa} \Phi_n(\phi_1, \psi_1, \dots, \phi_n, \psi_n, \varepsilon, \delta).$

Theorem

Let \vdash be a deductive system with variety K as its EAS. Then \vdash has a DDT iff K has EDPC.

DDT and EDPC

Theorem

If K has EDPC, then

$$\Theta, \phi_1 \approx \psi_1, \dots, \phi_n \approx \psi_n \models_{\mathcal{K}} \varepsilon \approx \delta$$

iff $\Theta \models_{\mathcal{K}} \Phi_n(\phi_1, \psi_1, \dots, \phi_n, \psi_n, \varepsilon, \delta).$

Theorem

Let \vdash be a deductive system with variety K as its EAS. Then \vdash has a DDT iff K has EDPC.

Corollary

Varieties of 1-transitive algebras have EDPC.

Finite model property

Definition

A variety K has the finite model property (FMP) if for any equation $\varepsilon \approx \delta$ such that $A \not\models \varepsilon \approx \delta$ for some $A \in K$, there is a finite $A \in K$ such that $A \not\models \varepsilon \approx \delta$.

Finite model property

Definition

A variety K has the finite model property (FMP) if for any equation $\varepsilon \approx \delta$ such that $A \not\models \varepsilon \approx \delta$ for some $A \in K$, there is a finite $A \in K$ such that $A \not\models \varepsilon \approx \delta$.

Proposition

A variety K has the FMP iff $K = \mathbb{V}(K_{Fin})$, where K_{Fin} is the class of finite members of K.

Finite model property

Definition

A variety K has the finite model property (FMP) if for any equation $\varepsilon \approx \delta$ such that $A \not\models \varepsilon \approx \delta$ for some $A \in K$, there is a finite $A \in K$ such that $A \not\models \varepsilon \approx \delta$.

Proposition

A variety K has the FMP iff $K = \mathbb{V}(K_{Fin})$, where K_{Fin} is the class of finite members of K.

Lemma

Let K be a variety with the FMP and EDPC. Then $K = \mathbb{Q}(K_{\text{FinSI}})$, where K_{FinSI} is the class of finite SI members of K.

Finishing off

Proposition

A variety K is primitive iff for all subvariety L of K, we have $L = \mathbb{Q}(F_L(\omega)).$

Finishing off

Proposition

A variety K is primitive iff for all subvariety L of K, we have $L = \mathbb{Q}(F_L(\omega)).$

Theorem

Let K be a variety with EDPC, and such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

Wrapping up

Corollary

Let K be a primitive variety of 1-transitive algebras. The finite SI members of K are weakly projective in K.

Corollary

Let K be a variety of 1-transitive algebras such that all its subvarieties have the FMP. If the finite SI members of K are weakly projective in K, then K is primitive.

Definition

•
$$(X, \tau)$$
 is a Stone space,

Definition

- (\mathbf{X}, τ) is a Stone space,
- (X, R) is a Kripke frame,

Definition

- (\mathbf{X}, τ) is a Stone space,
- (X, R) is a Kripke frame,
- R[x] is closed for all $x \in X$,

Definition

- (X, τ) is a Stone space,
- (X, R) is a Kripke frame,
- R[x] is closed for all $x \in X$,
- $\Box_R[U] = R^{-1}[U^c]^c = \{x \in X : R[x] \subseteq U\}$ is clopen for all clopen $U \subseteq X$.

Definition

A modal space is a triple (X, τ, R) such that

- (\mathbf{X}, τ) is a Stone space,
- (X, R) is a Kripke frame,
- R[x] is closed for all $x \in X$,
- $\Box_R[U] = R^{-1}[U^c]^c = \{x \in X : R[x] \subseteq U\}$ is clopen for all clopen $U \subseteq X$.

Maps between modal spaces are continuous p-morphisms.

Definition

A modal space is a triple (X, τ, R) such that

- (X, τ) is a Stone space,
- (X, R) is a Kripke frame,
- R[x] is closed for all $x \in X$,
- $\Box_R[U] = R^{-1}[U^c]^c = \{x \in X : R[x] \subseteq U\}$ is clopen for all clopen $U \subseteq X$.

Maps between modal spaces are continuous p-morphisms.

Definition

A subspace Y of a modal space X is a modal subspace if

• Y is closed in X, (i.e. Y is compact),

Definition

A modal space is a triple (X, τ, R) such that

- (\mathbf{X}, τ) is a Stone space,
- (X, R) is a Kripke frame,
- R[x] is closed for all $x \in X$,
- $\Box_R[U] = R^{-1}[U^c]^c = \{x \in X : R[x] \subseteq U\}$ is clopen for all clopen $U \subseteq X$.

Maps between modal spaces are continuous p-morphisms.

Definition

A subspace Y of a modal space X is a modal subspace if

- Y is closed in X, (i.e. Y is compact),
- Y is an upset, (i.e. the inclusion is a p-morphism).

Primitive varieties 000000 A topological perspective

Jónsson-Tarski duality

Algebra	Topology
Subalgebra	Quotient
	space
Quotient	Modal
	subspace
Finite	Disjoint union
product	
Finite SI	Finite rooted
Weakly	Weakly
projective	injective

