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Structural completeness Weakly transitive logics Timeline and method An algebraic perspective

Deductive systems

Let Fm be a set of propositional formulas.

Definition
A deductive system is a relation ` ⊆ P(Fm)× Fm such that

φ ∈ Γ implies Γ ` φ,

Γ ` φ and ∆ ` ψ for all ψ ∈ Γ imply ∆ ` φ.
Γ ` φ implies that there is a finite set ∆ ⊆ Γ such that ∆ ` φ.
for any substitution σ : Fm → Fm, Γ ` φ implies σ [Γ] ` σ(φ).



Structural completeness Weakly transitive logics Timeline and method An algebraic perspective

Deductive systems

Let Fm be a set of propositional formulas.

Definition
A deductive system is a relation ` ⊆ P(Fm)× Fm such that

φ ∈ Γ implies Γ ` φ,
Γ ` φ and ∆ ` ψ for all ψ ∈ Γ imply ∆ ` φ.

Γ ` φ implies that there is a finite set ∆ ⊆ Γ such that ∆ ` φ.
for any substitution σ : Fm → Fm, Γ ` φ implies σ [Γ] ` σ(φ).



Structural completeness Weakly transitive logics Timeline and method An algebraic perspective

Deductive systems

Let Fm be a set of propositional formulas.

Definition
A deductive system is a relation ` ⊆ P(Fm)× Fm such that

φ ∈ Γ implies Γ ` φ,
Γ ` φ and ∆ ` ψ for all ψ ∈ Γ imply ∆ ` φ.
Γ ` φ implies that there is a finite set ∆ ⊆ Γ such that ∆ ` φ.

for any substitution σ : Fm → Fm, Γ ` φ implies σ [Γ] ` σ(φ).



Structural completeness Weakly transitive logics Timeline and method An algebraic perspective

Deductive systems

Let Fm be a set of propositional formulas.

Definition
A deductive system is a relation ` ⊆ P(Fm)× Fm such that

φ ∈ Γ implies Γ ` φ,
Γ ` φ and ∆ ` ψ for all ψ ∈ Γ imply ∆ ` φ.
Γ ` φ implies that there is a finite set ∆ ⊆ Γ such that ∆ ` φ.
for any substitution σ : Fm → Fm, Γ ` φ implies σ [Γ] ` σ(φ).



Structural completeness Weakly transitive logics Timeline and method An algebraic perspective

Admissible and derivable rules

Let ` be a deductive system.

Definition
A rule is an expression of the form Γ . φ, where Γ is finite.

Definition
A rule Γ . φ is admissible in ` if for any substitution σ, ∅ ` σ(ψ)
for all ψ ∈ Γ implies ∅ ` σ(φ).
In other words, the set of theorems of ` is closed under ΓB φ, and
adding ΓB φ to ` does not add new theorems.

Definition
A rule Γ . ψ is derivable in ` if Γ ` φ.
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Structural completeness

Proposition
In a deductive system `, every derivable rule is admissible.

In CPC, the converse is true. In IPC, it is not.

Definition
A deductive system ` is structurally complete (SC) if every
admissible rule in ` is derivable in `.
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Extensions of a deductive system

Definition
A deductive system `′ is an extension of a deduction system ` if
` ⊆ `′, i.e. if Γ ` φ implies Γ `′ φ.

Definition
An extension `′ of a deductive system ` is an axiomatic extension
if there is a set of formulas ∆ such that

Γ `′ φ iff Γ,∆ ` φ.

Remark
If `′ is an axiomatic extension of `, we can always take ∆ to be
the theorems of `′.
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Hereditary structural completeness

Theorem (Olson, Raftery, Van Alten)
Let ` be a deductive system, TFEA.

Every extension of ` is SC.
Every axiomatic extension of ` is SC.
Every extension of ` is an axiomatic extension of `.
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Hereditary structural completeness

Theorem (Olson, Raftery, Van Alten)
Let ` be a deductive system, TFEA.

Every extension of ` is SC.
Every axiomatic extension of ` is SC.
Every extension of ` is an axiomatic extension of `.

Definition
A deductive system ` is hereditarily structurally complete (HSC) if
it validates any of the above.
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Deductive systems from modal logics

Definition
Given a NML Λ, we define a deductive system `Λ by
Γ `Λ φ iff φ is derivable from Γ using

the theorems of Λ,
Modus Ponens,
Necessitation

Remark
Given a NML Λ, the axiomatic extension of `Λ are those systems
of the form `Λ′ where Λ′ is a NML extending Λ.
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1-transitive logics

Definition
wK4 is the modal logic

K + p ∧�p → ��p.

Definition
A Kripke frame is a wK4-frame if its relation is 1-transitive, i.e.

x R y and y R z implies x R z or x = z

Definition
A modal algebra is a wK4-algebra if it validates a ∧�a ≤ ��a for
all a.
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1-transitive logics

Definition
wK4 is the modal logic

K + p ∧�p → ��p.

Remark
The master modality is definable as �+p := p ∧�p.

Proposition (Blok, Pigozzi)
If Λ is a 1-transitive logic, then `Λ has a deduction detachment
theorem (DDT) witnessed by �+p → q:

Γ, φ `Λ ψ iff Γ `Λ �+φ→ ψ.
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Timeline

Friedman, 1975: One hundred and two problems in
mathematical logic.

Rybakov, 1980’s: Decidability of admissible rules in IPC.
Ghilardi, Iemhoff, Jeřábek, Metcalfe, Rozière, 1990’s–: In
depth study of admissibility in various contexts.
Citkin, 1978: HSC of intermediate logics (extensions of IPC).
Rybakov, 1995: HSC of transitive modal logics (extensions of
K4).
Bezhanishvili, Moraschini, 2020: new proof of Citkin’s result.
Carr, 2022: new proof of Rybakov’s (corrected) result.
SL, 2023: HSC of weakly transitive modal logics (extension of
wK4)
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Method

Topology

Algebra

Logic

DualityAlgebraization

Topological semantics
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Algebraisable logics

Definition
A deductive system ` is algebraisable if there exist

a quasi-variety K ,
a set of equations τ(x),
a set of formulas ∆(x , y),

such that for all set of equation Θ, all equation ε ≈ δ, all set of
formulas Γ and all formula φ, we have

Γ ` φ iff τ [Γ] |=K τ(φ),
Θ |=K ε ≈ δ iff ∆[Θ] ` ∆(ε, δ),
φ ` ∆[τ(φ)] and ∆[τ(φ)] ` φ,
ε ≈ δ |=K τ [∆(ε, δ)] and τ [∆(ε, δ)] |=K ε ≈ δ.

The quasi-variety K is the equivalent algebraic semantics (EAS) of
`. It is unique when it exists.
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Rules and quasi-equations

Let ` be a deductive system with quasi-variety K as its EAS.

Remark
A rule ΓB φ corresponds to a quasi-equation

∧
τ [Γ] → τ(φ).

Conversely, a quasi-equation
∧
Θ → ε ≈ δ corresponds to a rule

∆[Θ]B∆(ε, δ)

Proposition
A rule is admissible in ` iff the corresponding quasi-equation is
valid in the free algebra FK (ω).

Proposition
A rule is derivable in ` iff the corresponding quasi-equation is valid
in K
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Structural completeness

Let ` be a deductive system with quasi-variety K as its EAS.

Corollary
` is SC iff every quasi-equation which is valid in FK (ω) is valid in
K.

Theorem (Prucnal, Wroński)
` is SC iff K = Q(FK (ω)).
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Extensions and subquasi-varieties

Let ` be a deductive system with quasi-variety K as its EAS.

Theorem (Blok, Pigozzi)
The lattice of extensions of ` is dually isomorphic to the lattice of
subquasi-varieties of K

Theorem (Blok, Pigozzi)
The lattice of axiomatic extensions of ` is dually isomorphic to the
lattice of relative subvarieties of K.
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Hereditary structural completeness

Let ` be a deductive system with variety K as its EAS.

Corollary
` is HSC iff every subquasi-variety of K is a variety.

Definition
A variety is primitive if all of its subquasi-varieties are varieties.
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Dictionary

Logic Algebra
Deductive

system
EAS

(variety)
Rules Quasi-equations

Admissible Valid in FK (ω)

Derivable Valid in K
SC K = Q(FK (ω))

Extensions Subquasi-
variety

Axiomatic
extensions Subvarieties

HSC Primitive
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Wrapping up

The following problems are equivalent:
Characterising the 1-transitive modal logics Λ such that `Λ is
HSC.
Characterising the axiomatic extensions of `wK4 which are
HSC.
Characterising the primitive varieties of wK4-algebras.
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