Hereditary Structural Completeness of Weakly Transitive Logics

Simon Lemal

Work supervised by Nick Bezhanishvili and Tommaso Moraschini

Wednesday 11th October, 2023

Let Fm be a set of propositional formulas.

Definition

- A deductive system is a relation $\vdash \subseteq \mathcal{P}(Fm) \times Fm$ such that
 - $\phi \in \Gamma$ implies $\Gamma \vdash \phi$,

Let Fm be a set of propositional formulas.

Definition

A deductive system is a relation $\vdash \subseteq \mathcal{P}(Fm) \times Fm$ such that

- $\phi \in \Gamma$ implies $\Gamma \vdash \phi$,
- $\Gamma \vdash \phi$ and $\Delta \vdash \psi$ for all $\psi \in \Gamma$ imply $\Delta \vdash \phi$.

Let Fm be a set of propositional formulas.

Definition

A deductive system is a relation $\vdash \subseteq \mathcal{P}(Fm) \times Fm$ such that

- $\phi \in \Gamma$ implies $\Gamma \vdash \phi$,
- $\Gamma \vdash \phi$ and $\Delta \vdash \psi$ for all $\psi \in \Gamma$ imply $\Delta \vdash \phi$.
- $\Gamma \vdash \phi$ implies that there is a finite set $\Delta \subseteq \Gamma$ such that $\Delta \vdash \phi$.

Let Fm be a set of propositional formulas.

Definition

A deductive system is a relation $\vdash \subseteq \mathcal{P}(Fm) \times Fm$ such that

- $\phi \in \Gamma$ implies $\Gamma \vdash \phi$,
- $\Gamma \vdash \phi$ and $\Delta \vdash \psi$ for all $\psi \in \Gamma$ imply $\Delta \vdash \phi$.
- $\Gamma \vdash \phi$ implies that there is a finite set $\Delta \subseteq \Gamma$ such that $\Delta \vdash \phi$.
- for any substitution $\sigma \colon Fm \to Fm$, $\Gamma \vdash \phi$ implies $\sigma [\Gamma] \vdash \sigma(\phi)$.

Structural completeness $0 \bullet 000$

Weakly transitive logics

Timeline and method

An algebraic perspective

Admissible and derivable rules

Let \vdash be a deductive system.

Definition

A rule is an expression of the form $\Gamma \triangleright \phi$, where Γ is finite.

An algebraic perspective 0000000

Admissible and derivable rules

Let \vdash be a deductive system.

Definition

A rule is an expression of the form $\Gamma \triangleright \phi$, where Γ is finite.

Definition

A rule $\Gamma \triangleright \phi$ is admissible in \vdash if for any substitution σ , $\emptyset \vdash \sigma(\psi)$ for all $\psi \in \Gamma$ implies $\emptyset \vdash \sigma(\phi)$. In other words, the set of theorems of \vdash is closed under $\Gamma \triangleright \phi$, and adding $\Gamma \triangleright \phi$ to \vdash does not add new theorems.

An algebraic perspective 0000000

Admissible and derivable rules

Let \vdash be a deductive system.

Definition

A rule is an expression of the form $\Gamma \triangleright \phi$, where Γ is finite.

Definition

A rule $\Gamma \triangleright \phi$ is admissible in \vdash if for any substitution σ , $\emptyset \vdash \sigma(\psi)$ for all $\psi \in \Gamma$ implies $\emptyset \vdash \sigma(\phi)$. In other words, the set of theorems of \vdash is closed under $\Gamma \triangleright \phi$, and adding $\Gamma \triangleright \phi$ to \vdash does not add new theorems.

Definition

A rule $\Gamma \triangleright \psi$ is derivable in \vdash if $\Gamma \vdash \phi$.

Structural completeness

Weakly transitive logics

Timeline and method

An algebraic perspective

Structural completeness

Proposition

In a deductive system \vdash , every derivable rule is admissible.

Structural completeness $00 \bullet 00$

Weakly transitive logics

Timeline and method

An algebraic perspective 0000000

Structural completeness

Proposition

In a deductive system \vdash , every derivable rule is admissible.

In CPC, the converse is true. In IPC, it is not.

Structural completeness $00 \bullet 00$

Weakly transitive logics

Timeline and method

An algebraic perspective 0000000

Structural completeness

Proposition

In a deductive system \vdash , every derivable rule is admissible.

In CPC, the converse is true. In IPC, it is not.

Definition

A deductive system \vdash is structurally complete (SC) if every admissible rule in \vdash is derivable in \vdash .

Extensions of a deductive system

Definition

A deductive system \vdash' is an extension of a deduction system \vdash if $\vdash \subseteq \vdash'$, i.e. if $\Gamma \vdash \phi$ implies $\Gamma \vdash' \phi$.

Extensions of a deductive system

Definition

A deductive system \vdash' is an extension of a deduction system \vdash if $\vdash \subseteq \vdash'$, i.e. if $\Gamma \vdash \phi$ implies $\Gamma \vdash' \phi$.

Definition

An extension \vdash' of a deductive system \vdash is an axiomatic extension if there is a set of formulas Δ such that

 $\Gamma \vdash' \phi$ iff $\Gamma, \Delta \vdash \phi$.

An algebraic perspective 0000000

Extensions of a deductive system

Definition

A deductive system \vdash' is an extension of a deduction system \vdash if $\vdash \subseteq \vdash'$, i.e. if $\Gamma \vdash \phi$ implies $\Gamma \vdash' \phi$.

Definition

An extension \vdash' of a deductive system \vdash is an axiomatic extension if there is a set of formulas Δ such that

 $\Gamma \vdash' \phi$ iff $\Gamma, \Delta \vdash \phi$.

Remark

If \vdash' is an axiomatic extension of \vdash , we can always take Δ to be the theorems of \vdash' .

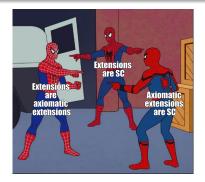
An algebraic perspective 0000000

Hereditary structural completeness

Theorem (Olson, Raftery, Van Alten)

Let \vdash be a deductive system, TFEA.

- Every extension of \vdash is SC.
- Every axiomatic extension of \vdash is SC.
- Every extension of \vdash is an axiomatic extension of \vdash .



An algebraic perspective

Hereditary structural completeness

Theorem (Olson, Raftery, Van Alten)

Let \vdash be a deductive system, TFEA.

- Every extension of \vdash is SC.
- Every axiomatic extension of \vdash is SC.
- Every extension of \vdash is an axiomatic extension of \vdash .

Definition

A deductive system \vdash is hereditarily structurally complete (HSC) if it validates any of the above.

Deductive systems from modal logics

Definition

Given a NML Λ , we define a deductive system \vdash_{Λ} by $\Gamma \vdash_{\Lambda} \phi$ iff ϕ is derivable from Γ using

- the theorems of Λ ,
- Modus Ponens,
- Necessitation

An algebraic perspective 0000000

Deductive systems from modal logics

Definition

Given a NML Λ , we define a deductive system \vdash_{Λ} by $\Gamma \vdash_{\Lambda} \phi$ iff ϕ is derivable from Γ using

- the theorems of Λ ,
- Modus Ponens,
- Necessitation

Remark

Given a NML Λ , the axiomatic extension of \vdash_{Λ} are those systems of the form $\vdash_{\Lambda'}$ where Λ' is a NML extending Λ .

An algebraic perspective

1-transitive logics

Definition

wK4 is the modal logic

$\mathsf{K} + p \land \Box p \to \Box \Box p.$

1-transitive logics

Definition

wK4 is the modal logic

$$\mathsf{K}+p\wedge\Box p\rightarrow\Box\Box p.$$

Definition

A Kripke frame is a wK4-frame if its relation is 1-transitive, i.e.

x R y and y R z implies x R z or x = z

1-transitive logics

Definition

wK4 is the modal logic

$\mathsf{K} + p \land \Box p \to \Box \Box p.$

Definition

A Kripke frame is a wK4-frame if its relation is 1-transitive, i.e.

x R y and y R z implies x R z or x = z

Definition

A modal algebra is a wK4-algebra if it validates $a \land \Box a \leq \Box \Box a$ for all a.

An algebraic perspective

1-transitive logics

Definition

```
wK4 is the modal logic
```

Remark

The master modality is definable as $\Box^+ p := p \land \Box p$.

1-transitive logics

Definition

```
wK4 is the modal logic
```

$$\mathsf{K} + \mathsf{p} \wedge \Box \mathsf{p} \to \Box \Box \mathsf{p}.$$

Remark

The master modality is definable as $\Box^+ p := p \land \Box p$.

Proposition (Blok, Pigozzi)

If Λ is a 1-transitive logic, then \vdash_{Λ} has a deduction detachment theorem (DDT) witnessed by $\Box^+ p \rightarrow q$:

$$\Gamma, \phi \vdash_{\Lambda} \psi$$
 iff $\Gamma \vdash_{\Lambda} \Box^+ \phi \to \psi$.

Structural completeness	Weakly transitive logics	Timeline and method ●0	An algebraic perspective
Timeline			

• Friedman, 1975: One hundred and two problems in mathematical logic.

Structural completeness	Weakly transitive logics	Timeline and method ●○	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.

Structural completeness	Weakly transitive logics	Timeline and method ●0	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.
- Ghilardi, lemhoff, Jeřábek, Metcalfe, Rozière, 1990's-: In depth study of admissibility in various contexts.

Structural completeness	Weakly transitive logics	Timeline and method ●0	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.
- Ghilardi, lemhoff, Jeřábek, Metcalfe, Rozière, 1990's-: In depth study of admissibility in various contexts.
- Citkin, 1978: HSC of intermediate logics (extensions of IPC).

Structural completeness	Weakly transitive logics	Timeline and method ●○	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.
- Ghilardi, lemhoff, Jeřábek, Metcalfe, Rozière, 1990's-: In depth study of admissibility in various contexts.
- Citkin, 1978: HSC of intermediate logics (extensions of IPC).
- Rybakov, 1995: HSC of transitive modal logics (extensions of K4).

Structural completeness	Weakly transitive logics	Timeline and method ●0	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.
- Ghilardi, lemhoff, Jeřábek, Metcalfe, Rozière, 1990's-: In depth study of admissibility in various contexts.
- Citkin, 1978: HSC of intermediate logics (extensions of IPC).
- Rybakov, 1995: HSC of transitive modal logics (extensions of K4).
- Bezhanishvili, Moraschini, 2020: new proof of Citkin's result.

Structural completeness	Weakly transitive logics	Timeline and method ●0	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.
- Ghilardi, lemhoff, Jeřábek, Metcalfe, Rozière, 1990's-: In depth study of admissibility in various contexts.
- Citkin, 1978: HSC of intermediate logics (extensions of IPC).
- Rybakov, 1995: HSC of transitive modal logics (extensions of K4).
- Bezhanishvili, Moraschini, 2020: new proof of Citkin's result.
- Carr, 2022: new proof of Rybakov's (corrected) result.

Structural completeness	Weakly transitive logics	Timeline and method ●0	An algebraic perspective
Timeline			

- Friedman, 1975: One hundred and two problems in mathematical logic.
- Rybakov, 1980's: Decidability of admissible rules in IPC.
- Ghilardi, lemhoff, Jeřábek, Metcalfe, Rozière, 1990's-: In depth study of admissibility in various contexts.
- Citkin, 1978: HSC of intermediate logics (extensions of IPC).
- Rybakov, 1995: HSC of transitive modal logics (extensions of K4).
- Bezhanishvili, Moraschini, 2020: new proof of Citkin's result.
- Carr, 2022: new proof of Rybakov's (corrected) result.
- SL, 2023: HSC of weakly transitive modal logics (extension of wK4)



Algebraisable logics

Definition

A deductive system \vdash is algebraisable if there exist

- a quasi-variety K,
- a set of equations $\tau(x)$,
- a set of formulas $\Delta(x, y)$,

such that for all set of equation $\Theta,$ all equation $\varepsilon\approx\delta,$ all set of formulas Γ and all formula $\phi,$ we have

- $\Gamma \vdash \phi$ iff $\tau[\Gamma] \models_{\mathcal{K}} \tau(\phi)$,
- $\bullet \ \Theta \models_{\mathcal{K}} \varepsilon \approx \delta \text{ iff } \Delta[\Theta] \vdash \Delta(\varepsilon, \delta),$
- $\bullet \ \phi \vdash \Delta[\tau(\phi)] \text{ and } \Delta[\tau(\phi)] \vdash \phi,$
- $\bullet \ \varepsilon \approx \delta \models_{\mathcal{K}} \tau[\Delta(\varepsilon, \delta)] \text{ and } \tau[\Delta(\varepsilon, \delta)] \models_{\mathcal{K}} \varepsilon \approx \delta.$

The quasi-variety K is the equivalent algebraic semantics (EAS) of \vdash . It is unique when it exists.

Structural completeness	Weakly transitive logics	Timeline and method	An algebraic perspective ○●○○○○○
Rules and guas	i-equations		

Let \vdash be a deductive system with quasi-variety K as its EAS.

Remark

A rule $\Gamma \rhd \phi$ corresponds to a quasi-equation $\bigwedge \tau[\Gamma] \to \tau(\phi)$. Conversely, a quasi-equation $\bigwedge \Theta \to \varepsilon \approx \delta$ corresponds to a rule $\Delta[\Theta] \rhd \Delta(\varepsilon, \delta)$

Structural completeness	Weakly transitive logics	Timeline and method	An algebraic perspective ○●○○○○○
Rules and quasi	-equations		

Let \vdash be a deductive system with quasi-variety K as its EAS.

Remark

A rule $\Gamma \rhd \phi$ corresponds to a quasi-equation $\bigwedge \tau[\Gamma] \to \tau(\phi)$. Conversely, a quasi-equation $\bigwedge \Theta \to \varepsilon \approx \delta$ corresponds to a rule $\Delta[\Theta] \rhd \Delta(\varepsilon, \delta)$

Proposition

A rule is admissible in \vdash iff the corresponding quasi-equation is valid in the free algebra $F_{\mathcal{K}}(\omega)$.

Structural completeness	Weakly transitive logics	Timeline and method	An algebraic perspective ○●○○○○○
Rules and guasi-equations			

Let \vdash be a deductive system with quasi-variety K as its EAS.

Remark

A rule $\Gamma \rhd \phi$ corresponds to a quasi-equation $\bigwedge \tau[\Gamma] \to \tau(\phi)$. Conversely, a quasi-equation $\bigwedge \Theta \to \varepsilon \approx \delta$ corresponds to a rule $\Delta[\Theta] \rhd \Delta(\varepsilon, \delta)$

Proposition

A rule is admissible in \vdash iff the corresponding quasi-equation is valid in the free algebra $F_{\mathcal{K}}(\omega)$.

Proposition

A rule is derivable in \vdash iff the corresponding quasi-equation is valid in K

An algebraic perspective

Structural completeness

Let \vdash be a deductive system with quasi-variety K as its EAS.

Corollary

 \vdash is SC iff every quasi-equation which is valid in $F_{K}(\omega)$ is valid in K.

Theorem (Prucnal, Wroński)

 \vdash is SC iff $K = \mathbb{Q}(F_{\mathcal{K}}(\omega))$.

An algebraic perspective

Extensions and subquasi-varieties

Let \vdash be a deductive system with quasi-variety K as its EAS.

Theorem (Blok, Pigozzi)

The lattice of extensions of \vdash is dually isomorphic to the lattice of subquasi-varieties of K

Extensions and subquasi-varieties

Let \vdash be a deductive system with quasi-variety K as its EAS.

Theorem (Blok, Pigozzi)

The lattice of extensions of \vdash is dually isomorphic to the lattice of subquasi-varieties of K

Theorem (Blok, Pigozzi)

The lattice of axiomatic extensions of \vdash is dually isomorphic to the lattice of relative subvarieties of K.

An algebraic perspective

Hereditary structural completeness

Let \vdash be a deductive system with variety K as its EAS.

Corollary

 \vdash is HSC iff every subquasi-variety of K is a variety.

An algebraic perspective 0000000

Hereditary structural completeness

Let \vdash be a deductive system with variety K as its EAS.

Corollary

 \vdash is HSC iff every subquasi-variety of K is a variety.

Definition

A variety is primitive if all of its subquasi-varieties are varieties.

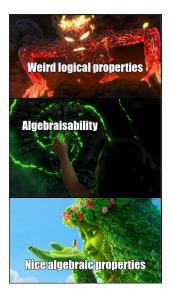
Weakly transitive logics

Timeline and method

An algebraic perspective

Dictionary

Logic	Algebra
Deductive	EAS
system	(variety)
Rules	Quasi-equations
Admissible	Valid in $F_{\mathcal{K}}(\omega)$
Derivable	Valid in <i>K</i>
SC	$\mathbf{K} = \mathbb{Q}(\mathbf{F}_{\mathbf{K}}(\omega))$
Extensions	Subquasi-
LATENSIONS	variety
Axiomatic	Subvarieties
extensions	Jubvalleties
HSC	Primitive





The following problems are equivalent:

- Characterising the 1-transitive modal logics Λ such that \vdash_Λ is HSC.
- \bullet Characterising the axiomatic extensions of \vdash_{wK4} which are HSC.
- Characterising the primitive varieties of wK4-algebras.