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Dedekind cuts

Assume that we have already defined the rational numbers Q. Dedekind
defines a real numbers as any set r ⊆ Q satisfying

r 6= ∅,
r 6= Q,
r is closed downwards,
r contains no greatest element.

Real numbers are ordered by inclusion and form a field.
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Von Neumann’s ordinals

Each ordinal is the well-ordered set of all smaller ordinals.

Formally, a set
S is an ordinal iff S is strictly well-ordered with respect to ∈ and every
element of S is also a subset of S.

In practice,
0 = ∅ is an ordinal,
1 = {0} is an ordinal,
2 = {0, 1} is an ordinal,
ω = {0, 1, 2, . . . } is an ordinal,
ω + 1 = {0, 1, 2, . . . , ω} is an
ordinal,
α = {β is an ordinal : β < α} is
an ordinal.
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Conway’s Numbers

Construction
If L,R are two sets of numbers, and for all l ∈ L, r ∈ R , we have l � r ,
then {L | R} is a number.

Definitions
We say x ≥ y iff xR � y and x � yL (for all xR and yL). The relations
≤,=, >,< follow.
We define

x + y = {x + yL, xL + y | x + yR , xR + y} and − x = {−xR | −xL}.

Finally, we let

xy = {xLy + xyL − xLyL, xRy + xyR − xRyR |
xLy + xyR − xLyR , xRy + xyL + xRyL}
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Examples of Numbers

{ | } = 0,
{0 | } = 1,
{ | 0} = −1,
{ | −1} = −2, {−1 | 0} = −1

2 , {0 | 1} = 1
2 , {1 | } = 2.
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More examples

What is the number x = {−1 | 2}?

Is x ≥ 0? Is x ≤ 0?
If y � x , then {y , xL | xR} = x . If y � x , then {xL | y , xR} = x .

Exercise
Prove that 1 + 1 = 2 and that 1

2 + 1
2 = 1.

What is the number {0 | 1
2}? What about {1

2 | 1}? {1 | 2}? {2 |}?
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Day ω

On day ω, we obtain
{0, 1, 2, . . . | } = {1, 2, 4, . . . | } = ω,

{ | 0,−1,−2, . . . } = −ω,
{0 | 1, 12 ,

1
4 , . . . } = 1

ω ,
1
3 = {1

4 ,
1
4 + 1

16 ,
1
4 + 1

16 + 1
64 , . . . |

1
2 ,

1
2 − 1

8 ,
1
2 − 1

8 − 1
32 , . . . },

√
2, e, π as cuts of dyadic numbers,

We also ’recreate’ dyadic rationals. For example,
{dyadic rationals < 3

8 | dyadic rationals > 3
8} turns out to be 3

8 .
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Some more Numbers
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Games

Construction
If L,R are two sets of games, then {L | R} is a games.

Remark

Games are not totally ordered.
To show that a games x = {xL | xR} is a number, we first show that
all games xL, xR are numbers, then show that xL ≥ xR never holds.

Definition
Two games x and y are identical (x ≡ y) iff every xL is identical to some
yL, every xR is identical to some yR and vice versa.
Two games x and y are equal if x ≥ y and x ≤ y .

Remark
Multiplication (of games) preserves identity but not equality.
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Properties of order and equality

Theorem
x � xR ,

x � xL,
x ≥ x,
x = x.

Theorem
If x ≥ y and y ≥ z, then x ≥ z.

Theorem
For any numbers x and y, we have xL < x < xR , and x ≥ y or x ≤ y.

Summary
Numbers are totally ordered by ≥.
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Group properties

Theorem (Properties of addition)
For all x , y , z, we have x + 0 = x,

x + y ≡ y + x and
(x + y) + z ≡ x + (y + z).

Theorem (Properties of negation)
For all x , y, we have −(x + y) ≡ −x +−y, −(−x) ≡ x and x +−x = 0.

Proof.
Induction, left as an exercise to the audience.

Summary
The operations +, − and 0 induce a Group structure on Games.
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Ordered group properties

Theorem
For all x , y , z, we have y ≥ z iff x + y ≥ x + z.

Corollary
If x1 = x2, then x1 + y = x2 + y.

Corollary

0 is a number,
if x is a number, so is −x,
if x and y are numbers, so is x + y.

Summary
Numbers form a totally ordered Group.
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Properties of multiplication

Theorem
For all x , y , z, we have x0 = 0,

x1 = x, xy ≡ yx, (−x)y ≡ −xy ≡ x(−y),
(x + y)z = xz + yz and (xy)z ≡ x(yz).

Theorem

If x1 = x2, then x1y = x2y,
If x and y are numbers, then so is xy.

Summary
Multiplication induces a Ring structure on Numbers and on Games.

Remark
It is also possible to define division, square roots, etc, turning the Class of
numbers into totally ordered Field with many properties.
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Real number

How does one single out the real numbers from the Class of numbers?

Definition
A number x is a real number iff −n < x < n for some integer n and

x = {x − 1, x − 1

2
, x − 1

3
, . . . | x + 1, x +

1

2
, x +

1

3
, . . .

Theorem

Dyadic rationals are real numbers.
Real numbers are closed under the field operations.
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Ordinal numbers

Definition
A game α is an ordinal iff it has an expression of the form α = {L | }.

Remark
Addition and multiplication are not the usual ordinal operations (which are
not commutative).
They correspond to the natural sum and product, obtained by treating the
Cantor normal form of an ordinal as a polynomial.
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Algebra and Analysis

Theorem
Every positive number x has a unique positive nth root, for each positive
integer n.

Theorem
Every odd-degree polynomial with coefficients in No has a root in No.

Remark
In No, one can define sums indexed over any ordinal.
Analytic functions (such as log, sin, exp) can be defined as power series.
One could also use various small subfields of No as a model for
non-standard analysis.
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Number Theory

Definition
A number x is an omnific integer if x = {x − 1 | x + 1}.

Theorem
Integers form a Subring of the Ring of Numbers.

Theorem (Euclidean division)
If a and b are integers with b positive, there are unique integers q and r
such that a = bq + r and 0 ≤ r < b.

Remark
Almost every number-theoretical problem can be rephrased so as to yield a
new problem in Oz, so we get a jackdaw’s nest of problems of various kind.
Examples include Waring’s problem, continued fractions, Pellian equations.
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Conventions

We shall consider games, played on some kind of board, by players Left
and Right.

Our own sympathies are usually with Left.

These games have positions. At any position P , there are rules which
restrict Left to move to certain positions, called Left options and denoted
PL. Similarly, Right may only move to certain positions, called Right
options and denoted PR . In abstract terms, any position is determined by
its Left and Right options, and we write P = {PL | PR}.

A game ends when the player who is called upon to move finds themself
unable to do so. A player who is unable to move is the loser (normal play
convention). For example, the position { | 0}, with Left about to move, is
an ended game, and a loss for Left.

Our players Left and Right are unwilling to play games that may go on
forever (they are both busy people, with heavy political responsibilities).
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Conventions (continued)
Each games G has its own starting position.

But for any position P of G,
we can obtain a shortened game by starting at P . Therefore, we find it
handy to identify this game with P . In particular, every game is identified
with its starting position.

Games can be represented as trees:

positions represented by nodes,
Left moves are represented by left-upward pointing edges,
Right moves are represented by right-upward pointing edges.
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Winning strategies

Definition
A game G is positive (G > 0) if there is a winning strategy for Left,

A game G is negative (G < 0) if there is a winning strategy for Right,
A game G is zero (G = 0) if there is a winning strategy for the
second player,
A game G is fuzzy (G ‖ 0) if there is a winning strategy for the first
player.

Notations
We write G ≥ 0 if G > 0 or G = 0 (there is a winning strategy for Left if
Right starts), and G |B 0 if G > 0 or G ‖ 0 (there is a winning strategy for
Left if Left starts.

Theorem
Each game belongs to one of the outcome classes above.
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Constructions on games

Definition (Negation of a game)
If we reverse the roles of Left and Right in a game G, we obtain the game

−G = {−GR | −GL}.

Definition (Sum of games)
If several games are played simultaneously, each player’s moves consist of
first picking one game, then picking a legal move in that game. If the
games G and H are played simultaneously, we obtain the game

G + H = {GL + H,G + HL | GR + H,G + HR}.

Examples

1 + 1 = {0 + 1, 1 + 0 | } = {1 | } = 2,
∗+ ∗ = {∗ | ∗} = 0.

Simon L. (uni.lu, UvA) Conway’s ONAG Fri 9th Feb, 2024 22 / 26



Constructions on games

Definition (Negation of a game)
If we reverse the roles of Left and Right in a game G, we obtain the game

−G = {−GR | −GL}.

Definition (Sum of games)
If several games are played simultaneously, each player’s moves consist of
first picking one game, then picking a legal move in that game.

If the
games G and H are played simultaneously, we obtain the game

G + H = {GL + H,G + HL | GR + H,G + HR}.

Examples

1 + 1 = {0 + 1, 1 + 0 | } = {1 | } = 2,
∗+ ∗ = {∗ | ∗} = 0.

Simon L. (uni.lu, UvA) Conway’s ONAG Fri 9th Feb, 2024 22 / 26



Constructions on games

Definition (Negation of a game)
If we reverse the roles of Left and Right in a game G, we obtain the game

−G = {−GR | −GL}.

Definition (Sum of games)
If several games are played simultaneously, each player’s moves consist of
first picking one game, then picking a legal move in that game. If the
games G and H are played simultaneously, we obtain the game

G + H = {GL + H,G + HL | GR + H,G + HR}.

Examples

1 + 1 = {0 + 1, 1 + 0 | } = {1 | } = 2,
∗+ ∗ = {∗ | ∗} = 0.

Simon L. (uni.lu, UvA) Conway’s ONAG Fri 9th Feb, 2024 22 / 26



Constructions on games

Definition (Negation of a game)
If we reverse the roles of Left and Right in a game G, we obtain the game

−G = {−GR | −GL}.

Definition (Sum of games)
If several games are played simultaneously, each player’s moves consist of
first picking one game, then picking a legal move in that game. If the
games G and H are played simultaneously, we obtain the game

G + H = {GL + H,G + HL | GR + H,G + HR}.

Examples
1 + 1 = {0 + 1, 1 + 0 | } = {1 | } = 2,

∗+ ∗ = {∗ | ∗} = 0.

Simon L. (uni.lu, UvA) Conway’s ONAG Fri 9th Feb, 2024 22 / 26



Constructions on games

Definition (Negation of a game)
If we reverse the roles of Left and Right in a game G, we obtain the game

−G = {−GR | −GL}.

Definition (Sum of games)
If several games are played simultaneously, each player’s moves consist of
first picking one game, then picking a legal move in that game. If the
games G and H are played simultaneously, we obtain the game

G + H = {GL + H,G + HL | GR + H,G + HR}.

Examples
1 + 1 = {0 + 1, 1 + 0 | } = {1 | } = 2,
∗+ ∗ = {∗ | ∗} = 0.

Simon L. (uni.lu, UvA) Conway’s ONAG Fri 9th Feb, 2024 22 / 26



Properties of negation and sums

Theorem
G + 0 = 0 + G = G,

G − G = 0,
if G ≥ 0 and H ≥ 0, then G + H ≥ 0,
if G > 0 and H ≥ 0, then G + H > 0,
if H = 0, then G and G + H have the same outcome,
if H − K = 0, then G + H and G + K have the same outcome,
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Relations on Games

Definition
We define G ≥ H iff GR � and G � HL,

G ≤ H iff H ≥ G. We write
G ‖ H (G is fuzzy against H) if neither.
We define G |B H iff G � H and G C| H iff G � H. We define <, > and
= as usual.

Interpretation

G > H iff G − H is won by Left, whoever starts,
G < H iff G − H is won by Right, whoever starts,
G = 0 iff G − H is won by the second player to move,
G ‖ H iff G − H is won by the first player to move.
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How to treat fuzzy numbers
Some games are not numbers:

∗ = {0 | 0},

{1 | −1},
{2 | −2}.

Definition
A short game is one which has only finitely many positions.

Theorem
For any short game G, there is some integer n with −n < G < n. For any
game G, there is some ordinal α with −α < G < α.

Proof.
Take n greater than the number of positions in G, and consider the game
G + n. Left can win by always decreasing n by 1, waiting for Right to run
out of options. Therefore G + n > 0, i.e. G > −n.
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Conclusion

Since the Conway’s book came out, there has been plenty of work on
Games.

There has been some work on Surreal numbers, mainly by Donald Knuth,
Harry Gonshor, Norman Alling, Philip Ehrlich and Martin Kruskal. This
work is mainly focused on nonstandard analysis.
There has also been some work on Numbers from an algebraic perspective,
proving universal properties of the Field / Group of numbers.
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