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Introduction
The celebrated Stone duality asserts that the category of Boolean algebras and Boolean homomorphisms
is dually equivalent to the category of Stone spaces and continuous maps. Stone duality was later
extended by Priestley in [5]. Indeed, Priestley proved that the category of bounded distributive lattices
and lattice homomorphisms is dually equivalent to the category of ordered Stone spaces which are totally
order disconnected – the so called Priestley spaces – and order preserving continuous maps between them.

In [2], the authors generalised Stone duality to a modal-like duality for Booleans algebras with a
subordination relation ≺, interpreted as some kind of strong inclusion. The dual of a pair (B,≺), where
B is a Boolean algebra and ≺ a subordination, is the space (X,R) obtained by defining the space X as the
Stone dual of B and the closed relation R by x R y iff �x ⊆ y, where �x = {b ∈ B : a ≺ b for some a ∈ x}.
The dual of the pair (X,R), where X is a Stone space and R a closed relation on X, is the subordination
algebra (B,≺) obtained by defining the algebra B as the dual of X and the subordination ≺ by a ≺ b
iff R[a] ⊆ b. These two constructions are each others inverse and they give rise to a duality between the
category of subordination algebras and the category of Stone spaces with a closed relation with their
respective morphisms. We shall refer to this duality as BBSV duality.

In this paper, we work out the “meet” of Priestley duality and BBSV duality. In other words,
we establish a duality between the category whose objects are bounded distributive lattices with a
subordination and the category of Priestley spaces with a closed relation satisfying some additional
condition. This duality generalises BBSV duality when restricting the distributive lattices to Boolean
algebras, and it generalises Priestley duality when restricting the subordinations to trivial ones. This
duality was obtained independently by Celani in [4], who gave a different characterisation of the dual
spaces. It is thus natural to compare both definitions and to show their equivalence.

We later explore some of the applications of this duality, especially to intuitionistic and modal logic.
We also give dual conditions to some common subordination axioms, and do an investigation of sub-
ordination lattices similar to the investigation of subordination algebras in [1, Sec. 2]. We also use an
extended BBSV duality to get a “classical” duality for subordination lattices, similar to what is done in
[1, Sec. 5 & 6].

This paper is organised as follows. In Section 1, we introduce subordinations on bounded distributive
lattices, dual relations on the dual Priestley spaces and prove the duality. We also compare our results
to those of Celani. In Section 2, we restrict the duality to Heyting algebras and modally definable
subordinations. As a corollary, we obtain a duality for modal Heyting algebras, the algebraic structures of
intuitionistic modal logic. In Section 3, we give dual conditions to some subordination axioms, including
an investigation of lattices subordinations, as in [1]. In Section 4, we work out the “classical” duality
arising from an extended BBSV duality. More precisely, we start from an extension of BBSV duality
and restrict it successively until we obtain the desired duality for bounded distributive lattices.

1 Bounded distributive lattices and subordinations
In [2], the authors extend Stone duality to Boolean algebras equipped with a subordination. In this
section, we use the same method to extend Priestley duality to bounded distributive lattice with a
subordination.

Definition 1.1. A subordination on a bounded distributive lattice L is a binary relation ≺ such that
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(S1) 0 ≺ 0 and 1 ≺ 1,
(S2) a ≺ b, c implies a ≺ b ∧ c,
(S3) a, b ≺ c implies a ∨ b ≺ c,
(S4) a ≤ b ≺ c ≤ d implies a ≺ d.

A lattice equipped with a subordination is called a subordination lattice.

Example 1.2. The relation ≺1 defined by a ≺1 b iff a = 0 or b = 1 is a subordination.
The order relation ≺2=≤ is a subordination.
The total relation ≺3 defined by a ≺3 b for all a, b is a subordination.

It is well known that the dual of a bounded distributive lattice is a Priestley space. If we wish to
extend Priestley’s duality, the dual of a subordination lattice should be a Priestley space with some
extra structure. In [2], the dual of a subordination on a Boolean algebra is a closed relation on the Stone
space. For the distributive lattice case, we need a notion stronger than mere closedness. This motivates
the following definition.

Definition 1.3. A Priestley relation on a Priestley space (X,≤) is a binary relation v such that x 6v y
implies that there is a clopen ≤-upset U containing x and a clopen ≤-downset V containing y such that
v[U ] ∩ V = ∅ (where v[U ] = {y ∈ X : x v y for some x ∈ U}).

A Priestley space equipped with a Priestley relation is called a Priestley subordination space.

Example 1.4. The total relation v1 defined by x v1 y for all x, y is a Priestley relation.
The order relation v2=≤ is a Priestley relation.
The empty relation v3 defined by x v3 y for no x, y is a Priestley relation.

We first investigate some properties of Priestley subordination spaces.

Lemma 1.5. If (X,≤,v) is a Priestley subordination space and U a closed set, then v[U ] and v−1[U ]
are closed (where v−1[U ] = {x ∈ X : x v y for some y ∈ U}).

Proof. It follows from the definition that v is closed. Indeed, if (x, y) 6∈ v, then x 6v y hence there is a
clopen upset U containing x and a clopen downset V containing y such that v[U ] ∩ V = ∅. It follows
that (x, y) ∈ U×V and U×V ∩v = ∅ hence v is closed. The result then follows from [2, Lem. 2.12].

Lemma 1.6. If (X,≤,v) is a Priestley subordination space and S ⊆ X, then v[S] is an upset and
v−1[S] is a downset.

Proof. We only prove the first claim, the second is similar. Assume that x ∈ S, x v y and y ≤ z but
x 6v z. Then there is a clopen upset U and a clopen downset V such that x ∈ U , z ∈ V and v[U ]∩V = ∅.
But since V is a downset we have y ∈ V and since x v y we have y ∈ v[U ], which is a contradiction.

We now compare our definition of Priestley subordination space with that of Celani in [4]. As we will
see, both defintions are equivalent.

Definition 1.7. A relation v on a Priestley space is a point-closed upset relation if v[x] is a closed
upset for each x.

Proposition 1.8. Let (X,≤) be a Priestley space and v a binary relation on X. Then the following
are equivalent:

1. for each closed set U , v[U ] is a closed upset v−1[U ] is a closed downset,
2. v is a point-closed upset relation and v−1[U c]c is an open upset for each clopen upset U ,
3. (X,≤,v) is a Priestley subordination space.

Proof. 1 ⇒ 2. That v is a point-closed upset relation follows from the fact that X is Hausdorff, i.e. for
every x the singleton {x} is closed, hence v[x] is a closed upset. If U is a clopen upset, then U c is closed
hence v−1[U c] is a closed downset. It follows that v−1[U c]c is an open upset.

2 ⇒ 3. Assume that x 6v y. Then v[x] is a closed upset not containing y. By the Priestley separation
axiom there is a clopen upset U containing v[x] but not containing y. Then v−1[U c]c is an open upset
containing x, hence there is a clopen upset V containing x and contained in v−1[U c]c. Then obviously
v[V ] ⊆ U , x ∈ V and y 6∈ U hence v is a Priestley relation.

3 ⇒ 1. If (X,≤,v) is a Priestley subordination space, then by the two previous lemmas the v image
of a closed upset is a closed upset and the v inverse image of a closed downset is a closed downset.
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Remark 1.9. The first condition in the previous theorem highlights how the Priestley case is different
from the Boolean one. In the Boolean case, we would only require v to be closed, which would be
equivalent to v[U ] and v−1[U ] both being closed if U is closed.
Remark 1.10. It can be shown, using a compactness argument, that if (X,≤,v) is a Priestley subordin-
ation space, U a closed upset and V a closed downset such that v[U ] ∩ V = ∅, then there is a clopen
upset U ′ and a clopen downset V ′ such that U ⊆ U ′, V ⊆ V ′ and v[U ′] ∩ V ′ = ∅.

However, this latter condition is not equivalent to the definition of a Priestley relation, as the following
example shows.
Example 1.11. Let (X,≤) be a Priestley space where not every singleton is an upset (that is, there are
x 6= y such that x ≤ y). Let ∆ be the diagonal, i.e. the equality relation.

Let us show that ∆ satisfies the latter condition. Clearly for any set S ⊆ X, ∆[S] = S. If U is
a closed upset and V a closed downset such that ∆[U ] ∩ V = ∅, then U ∩ V = ∅. By the Priestley
separation axiom, this implies that there is a clopen upset U ′ such that U ⊆ U ′ and U ′ ∩ V = ∅. Let
V ′ = U ′c, then V ′ is a clopen downset such that V ⊆ V ′ and U ′ ∩V ′ = ∅. We then have ∆[U ′]∩V ′ = ∅,
hence ∆ satisfies the latter condition.

However, ∆ is not a point-closed upset relation, as by the choice of Priestley space there is a point x
such that ∆[x] = {x} is not an upset.

1.1 Duality
We now have all the tools at hand to show that there is a correspondence betweeen subordination lattices
and Priestley subordination spaces.

From subordinations to Priestley relations For a subordination lattice (L,≺), let X be the set
of prime filters of L ordered by inclusion. For a ∈ L, define

φ(a) = {x ∈ X : a ∈ x}

and topologise X by letting {φ(a), X \ φ(a) : a ∈ L} be a subbasis for the topology. The resulting space
is the Priestley space of L.

Define a relation v by setting x v y iff �x ⊆ y, where �x = {b ∈ L : a ≺ b for some a ∈ x}. Let
us check that v is a Priestley relation. If x 6v y, then there is a ∈ �x \ y, hence there is b ∈ x such
that b ≺ a. Then x ∈ φ(b) (which is a clopen upset), y ∈ X \ φ(a) (which is a clopen downset) and
v[φ(b)] ⊆ φ(a). Then (X,⊆,v) is the dual of (L,≺), denoted (L,≺)∗.

From Priestley relations to subordinations For a Priestley subordination space (X,≤,v), let L
be the set of clopen upsets of X. This is a bounded distributive lattice and is denoted X∗.

Define a subordination ≺ by setting a ≺ b iff v[a] ⊆ b. It is easy to check that ≺ is a subordination
on L. The pair (L,≺) is the dual of (X,≤,v), denoted (X,≤,v)∗.
Example 1.12. Coming back to our examples, ≺1 corresponds to v1, ≺2 corresponds to v2 and ≺3

corresponds to v3.
For any bounded distributive lattice L, φ is an isomorphism from L to L∗

∗ and for any Priestley
space X, the map ψ : x 7→ {a ∈ X∗ : x ∈ a} is an isomorphism from X to X∗

∗. The two upcoming
lemmas show that these map also preserve the extra relation ≺ and v, thus making them subordination
lattice isomorphism and subordination space isomorphism.

Lemma 1.13. Let (L,≺) be a subordination lattice and φ : L → L∗
∗ the canonical isomorphism. Then

a ≺ b iff φ(a) ≺ φ(b).

Proof. This proof follows closely along the lines of [3, Lem. 3.14].
If a ≺ b, then a ∈ x implies b ∈ �x hence a ∈ x and �x ⊆ y implies b ∈ y. This means that x ∈ φ(a)

and x v y implies y ∈ φ(b), hence v[φ(a)] ⊆ φ(b), that is, φ(a) ≺ φ(b).
Now suppose that a 6≺ b, then b 6∈ �a. It is easy to see that �a is a filter, therefore, by the ultrafilter

theorem, there is an ultrafilter x such that �a ⊆ x and b 6∈ x.
Claim. There is a prime filter y such that a ∈ y and �y ⊆ x.
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Proof of Claim. Let F = ↑a and I = L \ x. Then F is a filter containing a and I is an ideal. We show
that �F ∩ I = ∅. If c ∈ �F ∩ I, then c ∈ I and there is d ∈ F with d ≺ c. Therefore c 6∈ x and a ≤ d ≺ c,
thus c ∈ �a. This yields �a * x, a contradiction.

Consequently, the set Z consisting of the filters G satisfying a ∈ G and �G ⊆ x is nonempty because
F ∈ Z. It is easy to see that (Z,⊆) is an inductive set, hence by Zorn’s lemma, Z has a maximal element,
say y. We show that y is a prime filter. Suppose c1, c2 6∈ y and c1∨ c2 ∈ y. Let F1 be the filter generated
by {c1} ∪ y and F2 be the filter generated by {c2} ∪ y. Since F1 and F2 properly contain y, they do not
belong to Z, so �F1, �F2 * x. This gives d1, d2 ∈ y and e 6∈ x such that c1 ∧ d1, c2 ∧ d2 ≺ e. By (S3) and
distributivity, (c1∨c2)∧(c1∨d2)∧(d1∨c2)∧(d1∨d2) ≺ e. But (c1∨c2)∧(c1∨d2)∧(d1∨c2)∧(d1∨d2) ∈ y,
so e ∈ �y ⊆ x. This is a contradiction, hence y is a prime filter.

It follows from the Claim that there is y ∈ L∗ such that y ∈ φ(a) and y v x. Therefore, x ∈ v[ϕ(a)].
On the other hand, x 6∈ φ(b). Thus, v[φ(a)] * φ(b), yielding φ(a) 6≺ φ(b).

Lemma 1.14. Let (X,≤,v) be a Priestley subordination space and ψ : X → X∗
∗ the canonical iso-

morphism. Then x v y iff ψ(x) v ψ(y).
Proof. If x v y, we have x ∈ a implies y ∈ v[a] hence a ∈ ψ(x) and a ≺ b implies b ∈ ψ(y). Clearly this
implies ψ(x) v ψ(y).

Now suppose that x 6v y, then since v is a Priestley relation there are clopen upsets a and b such that
x ∈ a, y 6∈ b and v[a] ⊆ b, or equivalently, a ∈ ψ(x), b 6∈ ψ(y) and a ≺ b. It follows that ψ(x) 6v ψ(y).

Let us now define morphisms and prove a duality for those morphisms.
Definition 1.15. A lattice morphism h : K → L between subordination lattices is monotone if a ≺ b
implies h(a) ≺ h(b).
Definition 1.16. A continuous map f : X → Y between Priestley subordination spaces is stable if x v y
implies f(x) v f(y).

The correspondence extends to morphisms, thus giving a full duality.
If h : K → L is a bounded distributive lattice morphism, then h∗ : L∗ → K∗ x 7→ h−1[x] is a

Priestley morphism. If h is monotone, then h∗ is stable.
If f : X → Y is a Priestley morphism, then f∗ : Y ∗ → X∗ a 7→ f−1[a] is a lattice morphism. If f is

stable, then f∗ is monotone.
Let DSub be the category whose objects are subordination lattices, and whose morphisms are mono-

tone lattice morphisms; and let PrR be the category whose objects are subordination spaces, and whose
morphisms are continuous stable maps. Naturality of the correspondence is done in exactly the same
way as for Priestley duality. We then obtain the following theorem.
Theorem 1.17. The category DSub is dually equivalent to the category PrR.

2 Restrictions of the duality
In this section, we restrict the duality obtained in the previous section to various subcategories of DSub.

2.1 Restriction to modal operators
If � is a modal operator on a bounded distributive lattice L, we can define a subordination on L by
a ≺� b iff a ≤ �b. The subordinations arising in this way are modally definable.
Definition 2.1. A subordination ≺ on a bounded distributive lattice L is modally definable if for all
a ∈ L, the set {b ∈ L : b ≺ a} has a largest element (with respect to the order ≤) .

A lattice equipped with a modally definable subordination is called a modal subordination lattice.
It is well known that modally definable subordinations and modal operators are equivalent. Indeed,

if ≺ is a modally definable subordination, define �≺a to be the largest element of {b ∈ L : b ≺ a}.
Conversely, if � is a modal operator, define ≺� by a ≺� b iff a ≤ �b. Then �≺ is a modal operator and
we have ≺�≺=≺ and �≺�

= �.
In the Boolean case, modally definable subordinations can be characterised by their dual relation.

We prove that a similar thing happens in the more general case.
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Definition 2.2. A Priestley relation v on a Priestley space (X,≤) is an Esakia relation if v−1[U ] is a
clopen ≤-downset for all clopen ≤-downset U .

Proposition 2.3. Let (L,≺) be a subordination lattice and let (X,≤,v) be its dual. If ≺ is modally
definable, then v is an Esakia relation.

Let (X,≤,v) be a Priestley subordination space let (L,≺) be its dual. If v is an Esakia relation,
then ≺ is modally definable.

Proof. We begin by proving the following claim:
Claim. φ(�≺a) = v−1[φ(a)c]c.

Proof of Claim. We have x ∈ v−1[φ(a)c]c iff R[x] ⊆ φ(a) iff �x ⊆ y implies a ∈ y for all y ∈ X. Because

�x is a filter, by the prime filter theorem, this is in turn equivalent to a ∈ �x. Since �≺a is the largest
element of {b ∈ L : b ≺ a}, we have a ∈ �x iff �≺a ∈ x, i.e. x ∈ φ(�≺a).

Now, take U a clopen downset. Since U c is a clopen upset, there is a ∈ L such that U c = φ(a). It
follows that φ(�≺a) = v−1[φ(a)c]c = v−1[U ]c. Therefore v−1[U ] = φ(�≺a)

c is a clopen downset.
For the converse, let U be a clopen upset. We have V ≺ U iff v[V ] ⊆ U iff V ⊆ v−1[U c]c and

v−1[U c]c is a clopen upset. Therefore v−1[U c]c is the largest element of {V ∈ L : V ≺ U} and ≺ is
modally definable.

This already gives us a duality. Define a modal Priestley space as a Priestley subordination space
(X,≤,v) such that v is an Esakia relation. Let MPS be the full subcategory of PrR whose objects are
the modal Priestley spaces; let MDSub be the full subcategory of DSub whose objects are the modal
subordination lattices. It follows from the previous result that MDSub is dually equivalent to MPS.

However, one is often more interested in the morphisms that preserve the modal operator. If (K,�),
(L,�) are lattices with a modal operator and h : K → L is a lattice morphism that preserves the modal
operator, then h is monotone for ≺�. However, if (K,≺), (L,≺) are subordination lattices with ≺
modally definable and h : K → L is a monotone lattice morphism, it is not always true that h preserves
�≺. It is only only if h is strongly monotone.

Definition 2.4. A bounded distributive lattice morphism h : K → L between subordination lattices is
strongly monotone if it is monotone and c ≺ h(a) implies that there is b ≺ a with c ≤ h(b).

If h : (K,�) → (L,�) is a lattice morphism that preserves �, then h is strongly monotone for ≺�.
Indeed, if c ≺ h(a), then c ≤ �h(a) = h(�a) and �a ≺ a. Conversely, if h : (K,≺) → (L,≺) is a strongly
monotone morphism and the subordinations are modally definable, then the set {h(b) : b ≺ a} is cofinal
in {c : c ≺ h(a)}, hence h(�a) = �h(a).

Define DSubst as the wide subcategory of DSub whose morphisms are the strongly monotone lattice
morphisms. In what follows, we give a duality for DSubst (note that we are working with general
subordinations instead of modally definable ones).

Definition 2.5. A Priestley morphism f : X → Y is strongly stable if it is stable and f(x) v y implies
that there is z with x v z and f(z) ≤ y.

Proposition 2.6. If h : K → L is a strongly monotone lattice morphism, then h∗ is strongly stable.
If f : X → Y is a strongly stable Priestley morphism, then f∗ is strongly monotone.

Proof. Assume that h is strongly monotone and that h∗(x) v y, that is, �h
−1[x] ⊆ y. Because h is

strongly monotone, we have h−1[ �x] ⊆ �h
−1[x] hence h−1[ �x] ⊆ y. It follows that �x ∩ ↓h[yc] = ∅. By

the prime filter theorem, there is a prime filter z such that �x ⊆ z and z ∩ h[yc] = ∅, hence x v z and
h−1[z] ⊆ y. Thus h∗ is strongly stable.

Now assume that f is strongly stable and that c ≺ f∗[a], that is, v[c] ⊆ f−1[a], or equivalently,
f [v[c]] ⊆ a. Since f is strongly stable, we have v[f [c]] ⊆ f [v[c]] hence v[f [c]] ⊆ a, i.e. f [c] ⊆ v−1[ac]c.
As f [c] is a closed upset (c is compact hence so is its image) and v−1[ac]c is an open upset, by the
Priestley separation axiom, there is a clopen upset b such that f [c] ⊆ b and b ⊆ v−1[ac]c. This b is such
that c ⊆ f−1[b] and v[b] ⊆ a, thus f∗ is strongly monotone.
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Let PrRst be the wide subcategory of PrR whose morphisms are the continuous strongly stable maps.
Then the category DSubst is dually equivalent to the category PrRst.

Now let MPSst be the intersection of MPS and PrRst, i.e. the category whose objects are modal
Priestley spaces, and whose morphisms are continuous strongly stable maps; and let MDSubst be the
intersection of MDSub and DSubst, i.e. the category whose objects are modal subordination lattices,
and whose morphisms are strongly monotone lattice morphisms. It immediately follows from the two
previous dualities that MDSubst is dually equivalent to MPSst.

2.2 Restriction to Heyting algebras
If (L,≺) is a subordination lattice such that L is a Heyting algebra, then obviously its dual (X,≤,v)
will be a Priestley subordination space where (X,≤) is an Esakia space (since the construction of (X,≤)
only depends on L and not on ≺).

Conversely, if (X,≤,v) is a Priestley subordination algebra such that (X,≤) is an Esakia space, then
its dual (L,≺) is a subordination lattice where L is a Heyting algebra.

As for morphisms, if h : K → L is a monotone Heyting algebra morphism, then its dual h∗ : K∗ → L∗
is a stable Esakia morphism and if f : X → Y is a stable Esakia morphism, then its dual f∗ : Y ∗ → X∗

is a monotone Heyting algebra morphism.
Categorically, let HSub be the subcategory of DSub whose objects are Heyting algebras with a sub-

ordination, and whose morphisms are the monotone Heyting algebra morphisms; and let EsR be the
category whose objects are Esakia spaces with a Priestley relation, and whose morphisms are the con-
tinuous stable p-morphisms. Then HSub is dually equivalent to EsR.

We can also combine this duality with the previous one in order to get a duality for intuitionistic
modal logic.

Definition 2.7. A Priestley subordination space (X,≤,v) is an intuitionistic modal space if (X,≤) is
an Esakia space and v is an Esakia relation.

A map f : X → Y between two intuitionistic modal spaces is an intuitionistic modal morphism if it
is a continuous strongly stable p-morphism.

Now let MHA be the category whose objects are modal Heyting algebras, and whose morphisms are
Heyting algebra morphisms that preserve the modal operator; and let IMS be the category whose objects
are the intuitionistic modal spaces, and whose morphisms are the intuitionistic modal morphisms. Then
obviously MHA is dually equivalent to IMS. Summarising all the dualities in this section, we obtain the
theorem below.

Theorem 2.8. 1. The category MDSub is dually equivalent to the category MPS.
2. The category DSubst is dually equivalent to the category PrRst.
3. The category MDSubst is dually equivalent to the category MPSst.
4. The category HSub is dually equivalent to the category EsR.
5. The category MHA is dually equivalent to the category IMS.

3 Characterisation of some classes of subordinations
When working with Stone spaces, one may require a subordination to satisfy some extra axioms, making
that subordination a de Vries subordination. Most of those axioms can be expressed in the language of
bounded distributive lattices, and can be characterised by a condition on the dual relation.

Definition 3.1. Additionally, a subordination may satisfies some of the following extra axioms
(S5) a ≺ b implies a ≤ b,
(S7) a ≺ b implies that there is c with a ≺ c ≺ b,
(S8) a 6= 1 implies that there is b 6= 1 such that a ≺ b,
(S9) a 6= 0 implies that there is b 6= 0 such that b ≺ a.

When working with Stone spaces, (S8) and (S9) are equivalent (provided the other axioms of a de
Vries subordination are satisfied), and a subordination satisfies (S8) iff the dual relation is irreducible.
That is no longer the case with bounded distributive lattices. We thus need two different dual conditions
for those two axioms.
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Definition 3.2. Let (X,≤,v) be a Priestley subordination space. We say that v is forward-irreducible
if the v image of any proper clopen upset is proper, and backward-irreducible if the v inverse image of
any proper clopen downset is proper.

Proposition 3.3. Let (L,≺) be a subordination lattice and let (X,≤,v) be a Priestley subordination
space such that (L,≺) and (X,≤,v) are each other’s dual, then

1. ≺ satisfies (S5) iff v is reflexive,
2. ≺ satisfies (S7) iff v is transitive,
3. ≺ satisfies (S8) iff v is forward-irreducible,
4. ≺ satisfies (S9) iff v is backward-irreducible.

Proof. If ≺ satisfies (S5), then �a ⊆↑a for all a hence �x ⊆ x for all (prime) filter x. Hence v is reflexive.
Conversely, if v is reflexive, then a ⊆ v[a] for all clopen upset a, hence a ≺ b implies a ⊆ b and ≺

satisfies (S5).
If ≺ satisfies (S7), then �x ⊆ � �x. Since x v y and y v z implies � �x ⊆ y, it also implies x v z.
Conversely, if v is transitive, then v[v[a]] ⊆ v[a]. If a ≺ b, then v[v[a]] ⊆ b hence v[a] ⊆ v−1[bc]c.

By Lemma 1.5 and Lemma 1.6, v[a] is a closed upset, v−1[bc]c is an open upset hence by the Priestley
separation axiom there is a clopen upset c such that v[a] ⊆ c ⊆ v−1[bc]c. It follows that v[a] ⊆ c and
v[c] ⊆ b hence a ≺ c ≺ b. Thus ≺ satisfies (S7).

If ≺ satisfies (S8), let U be a proper clopen upset in X. Since U is a clopen upest, there is a ∈ L
such that U = φ(a) and since U is proper, we have a 6= 1. By (S8), there is b 6= 1 such that a ≺ b, hence
v[U ] ⊆ φ(b) ( X. Hence v is forward-irreducible.

Conversely, if v is forward-irreducible, let a be a proper clopen upset. Then v[a] is a proper closed
upset hence there is a proper clopen upset b containing it. Then clearly b 6= 1 and a ≺ b.

The last claim is done similarly.

3.1 Lattice subordinations
Another nice property that a subordination may have is being a lattice subordination. This is studied
extensively in Section 2 of [1]. This subsection is written along the same lines.

Definition 3.4. A subordination ≺ on a bounded distributive lattice is a lattice subordination if a ≺ b
implies that there is c such that c ≺ c and a ≤ c ≤ b. Obviously a lattice subordination satisfies (S5)
and (S7).

A lattice equipped with a lattice subordination is called a lattice subordination lattice.

Example 3.5. The subordinations described in Example 1.2 are lattice subordinations.
The results in Section 2 of [1] adapt easily to the bounded distributive lattice case. Let us give some

results explicitly.

Lemma 3.6. Let ≺ be a lattice subordination on a bounded distributive lattice L and let D≺ = {a ∈ D :
a ≺ a} be the set of reflexive elements of ≺. Then D≺ is a sublattice of D.

Lemma 3.7. For a sublattice D of a bounded distributive lattice L, define ≺D by setting a ≺D b iff there
exists c ∈ D such that a ≤ c ≤ b. Then ≺D is a lattice subordination on L.

Lemma 3.8. Let L be a bounded distributive lattice.
1. If ≺ is a lattice subordination on L, then ≺=≺D≺ .
2. If D is a sublattice of L, then D = D≺D

.

Let DLS be the category whose objects are lattice subordination lattices, and whose morphisms are
monotone lattice morphisms; and let DDA be the category whose objects are pairs (L,D) where L is
a bounded distributive lattice and D is a sublattice of L, and whose morphisms are lattice morphisms
h : L1 → L2 satisfying a ∈ D1 implies h(a) ∈ D2. Then DLS is isomorphic to DDA.

We can also prove a duality for lattice subordination lattices. This is done in a very similar way to
[1, Thm. 5.2].
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Definition 3.9. A Priestley relation v on a Priestley space is a Priestley quasi-order if x 6v y implies
that there is a clopen ≤-upset v-upset U containing x but not y. Equivalently, if U is a closed ≤-upset
and V a closed ≤-downset such that v[U ] ∩ V = ∅, there is a clopen ≤-upset v-upset W containing U
and disjoint from V .

A Priestley space equipped with a Priestley quasi-order is called a Priestley quasi-ordered subordin-
ation space.

Example 3.10. The Priestley relations described in Example 1.4 are Priestley quasi-orders.

Proposition 3.11. Let (L,≺) be a lattice subordination lattice and let (X,≤,v) be its dual. Then
(X,≤,v) is a Priestley quasi-ordered subordination space.

Let (X,≤,v) be a Priestley quasi-ordered subordination space and let (L,≺) be its dual. Then (L,≺)
is a lattice subordination lattice.

Proof. For the first claim, assume that ≺ is a lattice subordination and let x, y be prime ideals such that
x 6v y. Then there are a, b such that a ∈ x, b 6∈ y and a ≺ b. Since ≺ is a lattice subordination, there is
c such that a ≤ c ≤ b and c ≺ c. Clearly φ(c) is a clopen ≤-upset containing x but not y. Because c ≺ c,
z ∈ φ(c) implies c ∈ �z hence φ(c) is also a v-upset. Hence v is a Priestley quasi-order.

For the second claim, assume that v is a Priestley quasi-order and let a ≺ b. Then v[a]∩bc = ∅ hence
by the equivalent statement in the previous definition, there is a clopen ≤-upset v-upset c containing a
and disjoint from bc. We thus have c ≺ c and a ≤ c ≤ b, hence ≺ is a lattice subordination.

Define PrQ as the full subcategory of PrR whose objects are Priestley quasi-ordered subordination
spaces. As a result of the previous proposition, we get the subsequent theorem.

Theorem 3.12. 1. The category DLS is isomorphic to the category DDA.
2. The category DLS is dually equivalent to the category PrQ.
3. The category DDA is dually equivalent to the category PrQ.

4 Classical equivalent to subordination lattices
We have shown that the category of subordination lattices is dually equivalent to the category of Priestley
subordination spaces. We now give a classical dual to Priestley subordination spaces. In order to do that,
we first establish a duality that is far more general, before restricting to progressively smaller categories.

Priestley subordination spaces are particular instances of Stone spaces with two closed relations. It
follows from [2, Thm. 2.22] that those objects correspond to Boolean algebras with two subordinations.
If (X,R1, R2) is a Stone space with two closed relations, let B be the Boolean algebra of clopen sets of
X, and define U ≺i V iff Ri[U ] ⊆ V . Then (B,≺1,≺2) is a Boolean algebra with two subordinations,
denoted (X,R1, R2)

∗. Conversely, if (B,≺1,≺2) is a Boolean algebra with two subordinations, let X be
the Stone dual of B and define x Ri y iff �ix ⊆ y. Then (X,R1, R2) is a Stone space with two closed
relation, denoted (B,≺1,≺2)∗.

Let StRR be the category whose objects are Stone spaces with two closed relations, and whose morph-
isms are continuous maps that preserve both relations; and let SubSub be the category whose objects are
Boolean algebras with two subordinations, and whose morphisms are Boolean algebra morphisms that
preserve both subordinations. Then SubSub is dually equivalent to StRR.

In our study of Priestley subordination spaces, we were interested in triplets (X,R1, R2) satisfying
some kind of separation axiom.

Definition 4.1. Let X be a Stone space and let R1, R2 be two closed relations on X. We say that R2

is a R1-Priestley relation if x 6R2 y implies that there is a clopen R1-upset U and a clopen R1-downset
V such that x ∈ U , y ∈ V and R2[U ] ∩ V = ∅.

The dual condition is as follows.

Definition 4.2. Let B be a Boolean algebra and let ≺1, ≺2 be two closed subordinations on B. We say
that ≺2 is a ≺1-compatible subordination if a ≺2 b implies that there are ≺1-reflexive elements c, d such
that a ≤ c ≺2 d ≤ b.

Let us show that these two conditions are indeed each other’s dual.
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Lemma 4.3. Let (X,R1, R2) ∈ SubSub and let (B,≺1,≺2) be its dual. If R2 is R1-Priestley, then ≺2

is ≺1-compatible.

Proof. Let U, V be clopen sets such that U ≺2 V , that is, R2[U ] ⊆ V . Then for any x ∈ U , y ∈ V c, we
have x 6R2 y hence there is a clopen R1-upset Ux,y and a clopen R1-downset Vx,y such that x ∈ Ux,y,
y ∈ Vx,y and R2[Ux,y]∩Vx,y = ∅. Now fix y ∈ V c, we have U ⊆

⋃
x∈U Ux,y hence by compactness there are

x1, . . . , xn ∈ U such that U ⊆ Ux1,y∪· · ·∪Uxn,y. Let Uy = Ux1,y∪· · ·∪Uxn,y and Vy = Vx1,y∩· · ·∩Vxn,y.
Then U ⊆ Uy, y ∈ Vy and R2[Uy] ∩ Vy = ∅. We have V c ⊆

⋃
y∈V c Vy hence by compactness there are

y1, . . . , ym ∈ V c such that V c ⊆ Vy1
∪ · · · ∪ Vym

. Let U ′ = Uy1
∩ · · · ∩ Uym

and V ′ = Vy1
∪ · · · ∪ Vym

.
Then U ⊆ U ′, V ′c ⊆ V and R2[U

′] ∩ V ′ = ∅, that is, U ≤ U ′ ≺2 V
′c ≤ V . Furthermore, U ′ and V ′c are

clopen R1-upsets hence they are ≺1-reflexive.

Lemma 4.4. Let (B,≺1,≺2) ∈ StRR and let (X,R1, R2) be its dual. If ≺2 is ≺1-compatible, then R2 is
R1-Priestley.

Proof. Let x,y be ultrafilters such that x 6R2 y, that is, �2x * y. Then there are elements a, b such
that a ≺2 b, a ∈ x and b 6∈ y. Because ≺2 is ≺1 compatible, there are ≺1-reflexive elements c, d
such that a ≤ c ≺2 d ≤ b. We then have x ∈ φ(c), R2[φ(c)] ⊆ φ(d) and y 6∈ φ(d). Because c, d
are ≺1-reflexive, φ(c) is a clopen R1-upset containing x and φ(d)c is a clopen R1-upset containing y.
Furthermore R2[φ(c)] ∩ φ(d)c = ∅.

Categorically, let StRP be the full subcategory of StRR whose objects are the objects (X,R1, R2) ∈
StRR such that R2 is R1-Priestley, and let SubCom be the full subcategory of SubSub whose objects are
the objects (B,≺1,≺2) ∈ SubSub such that ≺2 is ≺1-compatible. Then SubCom is dually equivalent to
StRP.

We still have to formulate a condition for the relation R1. We borrow these conditions from [1].

Definition 4.5. A closed relation ≤ on a Stone space is a Priestley quasi-order if x 6≤ y implies that
there is a clopen upset U with x ∈ U , y 6∈ U .

Definition 4.6. A subordination ≺ on a Boolean algebra is a lattice subordination if a ≺ b implies that
there is a reflexive c with a ≤ c ≤ b.

Remark 4.7. A relation ≤ on a Stone space is a Priestley quasi-order iff it is ≤-Priestley and reflexive.
Indeed, if ≤ is a Priestley quasi-order and x 6≤ y, then there is a clopen upset U with x ∈ U and y 6∈ U .
Then U c is a clopen downset with y ∈ U c and ≤[U ] ∩ U c = ∅, hence ≤ is ≤-Priestley. To show that
≤ is reflexive, assume that x 6≤ x. Then there is a clopen upset U with x ∈ U and x 6∈ U , absurd!
Conversely, assume that ≤ is ≤-Priestley and reflexive. If x 6≤ y, then there is a clopen upset U and a
clopen downset V with x ∈ U , y ∈ V and ≤[U ]∩V = ∅. Because ≤ is reflexive, we have U = ≤[U ] hence
y ∈ V ⊆ ≤[U ]c = U c. Hence U is a clopen upset with x ∈ U and y 6∈ U .

A subordination ≺ on a Boolean algebra is a lattice subordination iff it is ≺-compatible and satisfies
(S5). Indeed, if ≺ is a lattice subordination and a ≺ b, then there is a reflexive element c with a ≤ c ≤ b.
Then c, c are reflexive elements with a ≤ c ≺ c ≤ b. To show that ≺ is (S5), assume that a ≺ b. Then
there is a reflexive element c with a ≤ c ≤ b, hence a ≤ b. Conversely, assume that ≺ is ≺-compatible
and (S5). If a ≺ b, then there are reflexive elements c, d such that a ≤ c ≺ d ≤ b. Because ≺ is (S5), we
have c ≤ b hence c is a reflexive element with a ≤ c ≤ b.

It follows from [2, Lem. 4.6(1)] that if (B,≺1,≺2) and (X,R1, R2) are each other’s dual, then ≺1

is (S5) iff R1 is reflexive. It follows from the two previous lemmas that ≺1 is ≺1-compatible iff R1 is
R1-Priestley. Hence from the previous remark, it follows that ≺1 is a lattice subordination iff R1 is a
Priestley quasi-order, as was obtained in [1, Cor. 5.3].

Let StQR be the full subcategory of StRR whose objects are the objects (X,R1, R2) ∈ StRR such that
R1 is a Priestley quasi-order; and let LatSub be the full subcategory of SubSub whose objects are the
objects (B,≺1,≺2) ∈ SubSub such that ≺1 is a lattice subordination. Then LatSub is dually equivalent
to StQR.

Now let StQP be the intersection of StRP and StQR, i.e. the category whose objects are (X,R1, R2) ∈
StRR such that R1 is a Priestley quasi-order and R2 is R1-Priestley; and let LatCom be the intersection
of SubCom and LatSub, i.e. the category whose objects are the objects (B,≺1,≺2) ∈ SubSub such that
≺1 is a lattice subordination and ≺2 is ≺1-compatible. Then LatCom is dually equivalent to StQP.
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As was shown in [1, Thm. 2.10], lattice subordinations on a Boolean algebra correspond to sublattices
of that algebra and vice versa. To be able to give a similar correspondence for LatSub, we need to define
a notion of compatibility with respect to a sublattice.

Definition 4.8. Let B be a Boolean algebra, D a sublattice of B and ≺ a subordination on B. We say
that ≺ is a D-compatible subordination if a ≺ b implies that there are c, d ∈ D such that a ≤ c ≺ d ≤ b.

Remark 4.9. Given a Boolean algebra B, a sublattice D of B and a subordination ≺ on D, there is a
unique D-compatible extension ≺B of ≺ to B, defined as a ≺B b iff there are c, d ∈ D with a ≤ c ≺ d ≤ b.

Given a subordination ≺ on a Boolean algebra B, define D≺ = {a ∈ B : a ≺ a} as the set of reflexive
elements. Then D≺ is a sublattice of B. Conversely, given a sublattice D of a Boolean algebra B,
define a ≺D b iff there is c ∈ D such that a ≤ c ≤ b. Then ≺D is a subordination on B. Furthermore
≺D≺=≺ and D≺D

= D. It is also straightforward to check that a subordination is D-compatible iff it is
≺D-compatible.

Let BDCom be the category whose objects are triplets (B,D,≺) where B is a Boolean algebra, D
a sublattice of B and ≺ a D-compatible subordination on B, and whose morphisms are the Boolean
algebra morphisms that restrict to lattice morphisms between the sublattices and preserve ≺. Then
BDCom is isomorphic to LatCom.

It follows that BDCom is dually equivalent to StQP. In fact, this duality can be obtained directly. If
(B,D,≺) ∈ BDCom, let X be the Stone space of B, define x ≤ y iff x∩D ⊆ y, define x v y iff �x ⊆ y and
let (B,D,≺)∗ = (X,≤,v). Conversely, if (X,≤,v) ∈ StQP, let B be the Boolean algebra of clopen sets
of X, D the sublattice of clopen ≤-upsets, define U ≺ V iff v[U ] ⊆ V and let (X,≤,v)∗ = (B,D,≺).

Lemma 4.10. Let (B,D,≺) ∈ BDCom. Then (X,≤,v) = (B,D,≺)∗ ∈ StQP.

Proof. Clearly X is a Stone space. We show that ≤ is a Priestley quasi-order. Assume that x 6≤ y, that
is, there is a ∈ D with a ∈ x and a 6∈ y. Then φ(a) is a clopen ≤-upset with x ∈ φ(a), y 6∈ φ(a).

Let us now show that v is ≤-Priestley. Assume that x 6v y, that is, there are a ≺ b with a ∈ x
and b 6∈ y. Because ≺ is D-compatible, there are c, d ∈ D with a ≤ c ≺ d ≤ b. Then clearly x ∈ φ(c),
y ∈ φ(d)c and v[φ(c) ∩ φ(d)c = ∅. Because c, d ∈ D, φ(c) is a clopen ≤-upset and φ(d)c is a clopen
≤-downset.

Lemma 4.11. Let (X,≤,v) ∈ StQP. Then (B,D,≺) = (X,≤,v)∗ ∈ BDCom.

Proof. Clearly B is a Boolean algebra and D is a sublattice of B. It is also straightforward to check that
≺ is a subordination. Let us show that ≺ is D-compatible. Assume that U ≺ V , that is, v[U ] ⊆ V .
Then for any x ∈ U , y 6∈ V , we have x 6v y hence there is a clopen ≤-upset Ux,y and a clopen ≤-downset
Vx,y such that x ∈ Ux,y, y ∈ Vx,y and v[Ux,y] ∩ Vx,y = ∅. Fix y 6∈ V , then U ⊆

⋃
x∈U Ux,y hence by

compactness there are x1, . . . , xm ∈ U such that U ⊆ Ux1,y ∪ · · · ∪ Uxm,y. Let Uy = Ux1,y ∪ · · · ∪ Uxm,y

and Vy = Vx1,y ∪ · · · ∪ Vxm,y. Then for all y ∈ V c, U ⊆ Uy, y ∈ Vy and v[Uy] ∩ Vy = ∅. We have
V c ⊆

⋃
y∈V c Vy hence by compactness there are y1, . . . , yn ∈ V c such that V c ⊆ Vy1

∪ · · · ∪ Vyn
. Let

U ′ = Uy1
∩ · · · ∩ Uyn

. Then U ⊆ U ′, V c ⊆ V ′ and v[U ′] ∩ V ′ = ∅. It follows that U ≤ U ′ ≺ V ′c ≤ V ,
with U ′, V ′c ∈ D.

Let (X,≤,v) ∈ StQP and (B,D,≺) ∈ BDCom be each other’s dual. By [1, Lem. 6.4], we know that
≤ is a partial order iff B is generated by D. Letting GBDCom be the full subcategory of BDCom whose
objects are the objects (B,D,≺) ∈ BDCom such that D generates B, we get that GBDCom is dually
equivalent to PrR.

Since DSub is dually equivalent to PrR, it follows that DSub and GBDCom are equivalent. The
equivalence can also be obtained directly. The functor U : BDCom → DSub sending each (B,D,≺) to
(D,≺) has a left adjoint G : DSub → GBDCom sending each (D,≺) to (B(D), D,≺B) where B(D) is the
free Boolean extension of D and ≺B is the unique D-compatible extension of ≺ to B(D) described in
4.9. If (D,≺) ∈ DSub, then (B(D), D,≺B) ∈ GBDCom, therefore GBDCom is equivalent to DSub. In
summary, we get the theorem hereunder.

Theorem 4.12. 1. The category SubCom is dually equivalent to the category StRP.
2. The category LatSub is dually equivalent to the category StQR.
3. The category LatCom is dually equivalent to the category StQP.
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4. The category BDCom is isomorphic to the category LatCom.
5. The category BDCom is dually equivalent to the category StQP.
6. The category GBDCom is dually equivalent to the category PrR.
7. The category GBDCom is equivalent to the category DSub.

We conclude this paper with five tables. The first four contain lists of the categories considered in
this paper. The fifth table summarises the obtained isomorphisms, equivalences and dualities, together
with the corresponding theorem numbers. For two categories C and D, we write C ∼= D if C and D are
isomorphic, C ∼ D if C and D are equivalent, and C d∼ D if C and D are dually equivalent.

Category Objects (and morphisms)
DSub Subordination lattices
DSubst Subordination lattices (and strong morphisms)
MDSub Modal subordination lattices
MDSubst Modal subordination lattices (and strong morphisms)
HSub Heyting algebras with a subordination
MHA Modal Heyting algebras
DLS Lattice subordination lattices
DDA Distributive lattices with a sublattice

Table 1: Categories of distributive lattices with subordination

Category Objects
SubSub Boolean algebras with two subordinations
SubCom Boolean algebras with an arbitrary subordination and a compatible subordination
LatSub Boolean algebras with a lattice subordination and an arbitrary subordination
LatCom Boolean algebras with a lattice subordination and a compatible subordination
BDCom Boolean algebras with a sublattice and a compatible subordination
GBDCom Boolean algebras with a generating sublattice and a compatible subordination

Table 2: Categories of Boolean algebras with two subordinations

Category Objects (and morphisms)
PrR Priestley subordination spaces (Priestley space with a Priestley relation)
PrRst Priestley subordination spaces (and strong morphisms)
MPS Modal Priestley space (Priestley space with an Esakia relation)
MPSst Modal Priestley space (and strong morphisms)
EsR Esakia space with a Priestley relation
IMS Intuitionistic modal space (strong morphisms)
PrQ Priestley quasi-ordered subordination spaces

Table 3: Category of Priestley spaces with a relation

Category Objects
StRR Stone spaces with two closed relation
StRP Stone spaces with a closed relation and a Priestley relation
StQR Stone space with a Priestley quasi-order and a closed relation
StQP Stone space with a Priestley quasi-order and a Priestley relation

Table 4: Category of Stone spaces with two relations
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DSub ∼ GBDCom
d∼ PrR Thm. 1.17, 4.12

MDSub
d∼ MPS Thm. 2.8

DSubst
d∼ PrRst Thm. 2.8

MDSubst
d∼ MPSst Thm. 2.8

HSub
d∼ EsR Thm. 2.8

MHA
d∼ IMS Thm. 2.8

DLS ∼= DDA
d∼ PrQ Thm. 3.12

SubSub
d∼ StRR Sec. 4, third paragraph

SubCom
d∼ StRP Thm. 4.12

LatSub
d∼ StQR Thm. 4.12

LatCom ∼= BDCom
d∼ StQP Thm. 4.12

Table 5: Isomorphisms, equivalences and dualities
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